These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 791121)

  • 1. Mercurial toxicity in yeast: evidence for catabolic pathway inhibition.
    Brunker RL
    Appl Environ Microbiol; 1976 Oct; 32(4):498-504. PubMed ID: 791121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mercurial toxicity in yeast: glucose uptake, glycolytic and fermentative functions remain unimpaired.
    Brunker RL
    Microbios; 1979; 26(105-106):147-52. PubMed ID: 399318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP opens an electrophoretic potassium transport pathway in respiring yeast mitochondria.
    Roucou X; Manon S; Guerin M
    FEBS Lett; 1995 May; 364(2):161-4. PubMed ID: 7750562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cyclohexane, an industrial solvent, on the yeast Saccharomyces cerevisiae and on isolated yeast mitochondria.
    Uribe S; Rangel P; Espínola G; Aguirre G
    Appl Environ Microbiol; 1990 Jul; 56(7):2114-9. PubMed ID: 2202257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micromolar HgCl2 concentrations transitorily duplicate the ATP level in Saccharomyces cerevisiae cells.
    Silles E; Osorio H; Maia R; Günther Sillero MA; Sillero A
    FEBS Lett; 2005 Aug; 579(19):4044-8. PubMed ID: 16023109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ATP-induced K(+)-transport pathway of yeast mitochondria may function as an uncoupling pathway.
    Manon S; Guérin M
    Biochim Biophys Acta; 1997 Feb; 1318(3):317-21. PubMed ID: 9048974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between glucose metabolism and oxidative phosphorylations on respiratory-competent Saccharomyces cerevisiae cells.
    Beauvoit B; Rigoulet M; Bunoust O; Raffard G; Canioni P; Guérin B
    Eur J Biochem; 1993 May; 214(1):163-72. PubMed ID: 8508788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury-induced loss of K+ from yeast cells investigated by electron probe x-ray microanalysis.
    Kuypers GA; Roomans GM
    J Gen Microbiol; 1979 Nov; 115(1):13-8. PubMed ID: 393796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dicarbanonaborates in yeast respiration and membrane transport.
    Kotyk A; Lapathitis G
    Biochem Mol Biol Int; 1997 Apr; 41(5):933-40. PubMed ID: 9137824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism for the ATP-induced uncoupling of respiration in mitochondria of the yeast Saccharomyces cerevisiae.
    Prieto S; Bouillaud F; Rial E
    Biochem J; 1995 May; 307 ( Pt 3)(Pt 3):657-61. PubMed ID: 7741693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of cellobiose lipid B on Saccharomyces cerevisiae cells: K+ leakage and inhibition of polyphosphate accumulation].
    Kulakovskaia EV; Ivanov AIu; Kulakovskaia TV; Vagabov VM; Kulaev IS
    Mikrobiologiia; 2008; 77(3):331-5. PubMed ID: 18683649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of the adenosine phosphate pool level to changes in the catabolic pattern of Saccharomyces cerevisiae.
    Akbar MD; Rickard PA; Moss FJ
    Biotechnol Bioeng; 1974 Apr; 16(4):455-74. PubMed ID: 4605056
    [No Abstract]   [Full Text] [Related]  

  • 13. Phosphate transport and ATP synthesis in yeast mitochondria: effect of a new inhibitor: the tribenzylphosphate.
    Rigoulet M; Guerin B
    FEBS Lett; 1979 Jun; 102(1):18-22. PubMed ID: 378698
    [No Abstract]   [Full Text] [Related]  

  • 14. Cell ATP level of Saccharomyces cerevisiae sensitively responds to culture growth and drug-inflicted variations in membrane integrity and PDR pump activity.
    Krasowska A; Łukaszewicz M; Bartosiewicz D; Sigler K
    Biochem Biophys Res Commun; 2010 Apr; 395(1):51-5. PubMed ID: 20346916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of the energy coupling modes in mitochondria by mercurials.
    Southard JH; Green DE
    Biochem Biophys Res Commun; 1974 Dec; 61(4):1310-6. PubMed ID: 4477015
    [No Abstract]   [Full Text] [Related]  

  • 16. Response of the intracellular adenosine triphosphate pool of Saccharomyces cerevisiae to growth inhibition induced by excess L-methionine.
    Bailey RB; Parks LW
    J Bacteriol; 1972 Aug; 111(2):542-6. PubMed ID: 4559735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual system for potassium transport in Saccharomyces cerevisiae.
    Rodríguez-Navarro A; Ramos J
    J Bacteriol; 1984 Sep; 159(3):940-5. PubMed ID: 6384187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active extrusion of potassium in the yeast Saccharomyces cerevisiae induced by low concentrations of trifluoperazine.
    Eilam Y; Lavi H; Grossowicz N
    J Gen Microbiol; 1985 Oct; 131(10):2555-64. PubMed ID: 3906026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Saccharomyces cerevisiae, the effect of H2O2 on ATP, but not on glyceraldehyde-3-phosphate dehydrogenase, depends on the glucose concentration.
    Osório H; Moradas-Ferreira P; Günther Sillero MA; Sillero A
    Arch Microbiol; 2004 Mar; 181(3):231-6. PubMed ID: 14735298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. H2O2, but not menadione, provokes a decrease in the ATP and an increase in the inosine levels in Saccharomyces cerevisiae. An experimental and theoretical approach.
    Osorio H; Carvalho E; del Valle M; Günther Sillero MA; Moradas-Ferreira P; Sillero A
    Eur J Biochem; 2003 Apr; 270(7):1578-89. PubMed ID: 12654013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.