These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7911536)

  • 1. Determination of the dopamine D2 agonist N-0923 and its major metabolites in perfused rat livers by HPLC-UV-atmospheric pressure ionization mass spectrometry.
    Swart PJ; Oelen WE; Bruins AP; Tepper PG; de Zeeuw RA
    J Anal Toxicol; 1994; 18(2):71-7. PubMed ID: 7911536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The metabolic fate of the dopamine agonist 2-(N-propyl-N-2-thienylethylamino)-5-hydroxytetralin in rats after intravenous and oral administration. II. Isolation and identification of metabolites.
    Gerding TK; Drenth BF; de Zeeuw RA; Tepper PG; Horn AS
    Xenobiotica; 1990 May; 20(5):525-36. PubMed ID: 1971984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism and disposition of the dopamine agonist 2-(N-propyl-N-2-thienylethylamino)-5-hydroxytetralin in conscious monkeys after subsequent i.v. oral, and ocular administration.
    Gerding TK; Drenth BF; de Zeeuw RA; Tepper PG; Horn AS
    Drug Metab Dispos; 1990; 18(6):923-8. PubMed ID: 1981538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and quantification of metabolites of 2,3,5,6-tetrafluoro-4-trifluoromethylaniline in rat urine using 19F nuclear magnetic resonance spectroscopy, high-performance liquid chromatography-nuclear magnetic resonance spectroscopy and high-performance liquid chromatography-mass spectrometry.
    Scarfe GB; Clayton E; Wilson ID; Nicholson JK
    J Chromatogr B Biomed Sci Appl; 2000 Oct; 748(1):311-9. PubMed ID: 11092607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversed-phase liquid chromatographic method with amperometric detection for the determination of the dopamine agonist 2-(N-propyl-N-2-thienylethylamino)-5-hydroxytetralin (N-0437) in human plasma and urine.
    Swart PJ; Drenth BF; de Zeeuw RA
    J Chromatogr; 1990 Jun; 528(2):464-72. PubMed ID: 1974552
    [No Abstract]   [Full Text] [Related]  

  • 6. Glucuronidation as a transient intermediate metabolic step in the elimination of (-)-carbovir. Identification of (-)-carbovir-5'-O-glucuronide in rat bile.
    Zimmerman CL; Iyer KR; Faudskar AL; Remmel RP
    Drug Metab Dispos; 1993; 21(5):902-10. PubMed ID: 7902254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of new metabolites from in vivo biotransformation of norisoboldine by liquid chromatography/mass spectrometry and NMR spectroscopy.
    Chen JZ; Chou GX; Wang CH; Yang L; Bligh SW; Wang ZT
    J Pharm Biomed Anal; 2010 Sep; 52(5):687-93. PubMed ID: 20223612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of metabolites of benz(j)aceanthrylene in faeces, urine and bile from rat.
    Hegstad S; Lundanes E; Holme JA; Alexander J
    Xenobiotica; 1999 Dec; 29(12):1257-72. PubMed ID: 10647911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the biotransformation of benfluron using the isolated perfused rat liver.
    Svoboda Z; Nobilis M; Kvĕtina J; Lemr K
    Acta Medica (Hradec Kralove); 1999; 42(2):73-8. PubMed ID: 10596420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct analysis of the dopamine agonist (-)-2-(N-propyl-N-2-thienylethylamino)-5-hydroxytetralin hydrochloride in plasma by high-performance liquid chromatography using two-dimensional column switching.
    Ruckmick SC; Hench BD
    J Chromatogr; 1991 Apr; 565(1-2):277-95. PubMed ID: 1678747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the biotransformation of a potential benzo[c]fluorene antineoplastic using high-performance liquid chromatography with high-speed-scanning ultraviolet detection.
    Nobilis M; Anzenbacher P; Pastera J; Svoboda Z; Hrubý K; Kvĕtina J; Ubik K; Trejtnar F
    J Chromatogr B Biomed Appl; 1996 May; 681(1):143-51. PubMed ID: 8798923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of triclosan metabolites by using in-source fragmentation from high-performance liquid chromatography/negative atmospheric pressure chemical ionization ion trap mass spectrometry.
    Wu JL; Liu J; Cai Z
    Rapid Commun Mass Spectrom; 2010 Jul; 24(13):1828-34. PubMed ID: 20533312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Profiling and identification of metabolites of isorhynchophylline in rats by ultra high performance liquid chromatography and linear ion trap Orbitrap mass spectrometry.
    Wang J; Qi P; Hou J; Shen Y; Yan B; Bi Q; Feng R; Shi X; Yang M; Wu W; Guo DA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Oct; 1033-1034():147-156. PubMed ID: 27561181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification with liquid chromatography-ionspray mass spectrometry of the metabolites of the enantiomers N-methyl dextrorphan and N-methyl levorphanol after rat liver perfusion.
    Lanting AB; Bruins AP; Drenth BF; de Jonge K; Ensing K; de Zeeuw RA; Meijer DK
    Biol Mass Spectrom; 1993 Apr; 22(4):226-34. PubMed ID: 8481410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of LC-MS analysis to the characterisation of the in vitro and in vivo metabolite profiles of RGH-1756 in the rat.
    Gémesi LI; Kapás M; Szeberényi S
    J Pharm Biomed Anal; 2001 Mar; 24(5-6):877-85. PubMed ID: 11248481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous determination of tectorigenin and its metabolites in rat plasma by ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry.
    Wang S; Gong T; Lu J; Kano Y; Yuan D
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Aug; 933():50-8. PubMed ID: 23872519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HPLC-NMR with severe column overloading: fast-track metabolite identification in urine and bile samples from rat and dog treated with [14C]-ZD6126.
    Lenz EM; D'Souza RA; Jordan AC; King CD; Smith SM; Phillips PJ; McCormick AD; Roberts DW
    J Pharm Biomed Anal; 2007 Feb; 43(3):1065-77. PubMed ID: 17030109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competing pathways in drug metabolism. I. Effect of input concentration on the conjugation of gentisamide in the once-through in situ perfused rat liver preparation.
    Morris ME; Yuen V; Tang BK; Pang KS
    J Pharmacol Exp Ther; 1988 May; 245(2):614-24. PubMed ID: 3367309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolites identification of harmane in vitro/in vivo in rats by ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry.
    Li S; Liu W; Teng L; Cheng X; Wang Z; Wang C
    J Pharm Biomed Anal; 2014 Apr; 92():53-62. PubMed ID: 24486683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic profile of salidroside in rats using high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry.
    Han F; Li YT; Mao XJ; Zhang XS; Guan J; Song AH; Yin R
    Anal Bioanal Chem; 2016 Mar; 408(7):1975-81. PubMed ID: 26558763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.