These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 7911576)

  • 41. NMDA-receptor blockade by CPP impairs post-training consolidation of a rapidly acquired spatial representation in rat hippocampus.
    McDonald RJ; Hong NS; Craig LA; Holahan MR; Louis M; Muller RU
    Eur J Neurosci; 2005 Sep; 22(5):1201-13. PubMed ID: 16176363
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 5-HT(1A) and NMDA receptors interact in the rat medial septum and modulate hippocampal-dependent spatial learning.
    Elvander-Tottie E; Eriksson TM; Sandin J; Ogren SO
    Hippocampus; 2009 Dec; 19(12):1187-98. PubMed ID: 19309036
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Behavioral effects of NMDA receptor agonists and antagonists in combination with nitric oxide-related compounds.
    Smith JB; Ogonowski AA
    Eur J Pharmacol; 2003 Jun; 471(2):121-8. PubMed ID: 12818699
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5.
    Steele RJ; Morris RG
    Hippocampus; 1999; 9(2):118-36. PubMed ID: 10226773
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bidirectional modulation of basal forebrain N-methyl-D-aspartate receptor function differentially affects visual attention but not visual discrimination performance.
    Turchi J; Sarter M
    Neuroscience; 2001; 104(2):407-17. PubMed ID: 11377844
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Time-dependent involvement of the dorsal hippocampus in trace fear conditioning in mice.
    Misane I; Tovote P; Meyer M; Spiess J; Ogren SO; Stiedl O
    Hippocampus; 2005; 15(4):418-26. PubMed ID: 15669102
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An NMDA receptor/nitric oxide cascade is involved in cerebellar LTD but is not localized to the parallel fiber terminal.
    Shin JH; Linden DJ
    J Neurophysiol; 2005 Dec; 94(6):4281-9. PubMed ID: 16120658
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Blockade of NMDA receptors in the dorsomedial striatum prevents action-outcome learning in instrumental conditioning.
    Yin HH; Knowlton BJ; Balleine BW
    Eur J Neurosci; 2005 Jul; 22(2):505-12. PubMed ID: 16045503
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evidence that gonadal steroids modulate nitric oxide efflux in the medial preoptic area: effects of N-methyl-D-aspartate and correlation with luteinizing hormone secretion.
    Pu S; Xu B; Kalra SP; Kalra PS
    Endocrinology; 1996 May; 137(5):1949-55. PubMed ID: 8612535
    [TBL] [Abstract][Full Text] [Related]  

  • 50. SA4503, a novel cognitive enhancer with sigma1 receptor agonist properties, facilitates NMDA receptor-dependent learning in mice.
    Maurice T; Privat A
    Eur J Pharmacol; 1997 Jun; 328(1):9-18. PubMed ID: 9203561
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nitric oxide in retina: relation to excitatory amino acids and excitotoxicity.
    Zeevalk GD; Nicklas WJ
    Exp Eye Res; 1994 Mar; 58(3):343-50. PubMed ID: 7513649
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of an endogenous amnesic mechanism mediated by brain beta-endorphin in memory modulation.
    Izquierdo I
    Braz J Med Biol Res; 1982 Jul; 15(2-3):119-34. PubMed ID: 6758890
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nitric oxide responsible for NMDA receptor-evoked inhibition of arachidonic acid incorporation into lipids of brain membrane.
    Samochocki M; Chalimoniuk M; Strosznajder J
    Mol Chem Neuropathol; 1996 Sep; 29(1):79-92. PubMed ID: 8887942
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spatial learning without NMDA receptor-dependent long-term potentiation.
    Saucier D; Cain DP
    Nature; 1995 Nov; 378(6553):186-9. PubMed ID: 7477321
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of intraseptal infusions of N-methyl-D-aspartate receptor ligands on memory in an object recognition task in rats.
    Puma C; Baudoin C; Bizot JC
    Neurosci Lett; 1998 Mar; 244(2):97-100. PubMed ID: 9572594
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glutamate, NMDA and NMDA receptor antagonists: cardiovascular effects of intrathecal administration in the rat.
    Hong YG; Henry JL
    Brain Res; 1992 Jan; 569(1):38-45. PubMed ID: 1351773
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Morphine modulates excitatory amino acid-induced activity in the mouse spinal cord: short-term effects on N-methyl-D-aspartate (NMDA) and long-term effects on kainic acid.
    Yukhananov RYu ; Larson AA
    Brain Res; 1994 May; 646(2):194-200. PubMed ID: 8069663
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Post-training N-methyl-D-aspartate receptor blockade offers protection from retrograde interference but does not affect consolidation of weak or strong memory traces in the water maze.
    Day M; Langston RF
    Neuroscience; 2006; 137(1):19-28. PubMed ID: 16289349
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of excitatory amino acids in mediating burst discharge of red nucleus neurons in the in vitro turtle brain stem-cerebellum.
    Keifer J; Houk JC
    J Neurophysiol; 1991 Mar; 65(3):454-67. PubMed ID: 1675669
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Involvement of the nucleus accumbens shell glutamatergic system in ACPA-induced impairment of inhibitory avoidance memory consolidation.
    Rasekhi K; Oryan S; Nasehi M; Zarrindast MR
    Behav Brain Res; 2014 Aug; 269():28-36. PubMed ID: 24739359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.