These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 7911796)

  • 1. Effect of beta-receptor blockade on splanchnic and muscle metabolism during prolonged exercise in men.
    Ahlborg G; Juhlin-Dannfelt A
    J Appl Physiol (1985); 1994 Mar; 76(3):1037-42. PubMed ID: 7911796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids.
    Ahlborg G; Felig P; Hagenfeldt L; Hendler R; Wahren J
    J Clin Invest; 1974 Apr; 53(4):1080-90. PubMed ID: 4815076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Splanchnic and muscle fructose metabolism during and after exercise.
    Ahlborg G; Björkman O
    J Appl Physiol (1985); 1990 Oct; 69(4):1244-51. PubMed ID: 2262441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactate and glucose exchange across the forearm, legs, and splanchnic bed during and after prolonged leg exercise.
    Ahlborg G; Felig P
    J Clin Invest; 1982 Jan; 69(1):45-54. PubMed ID: 7054242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose metabolism during leg exercise in man.
    Wahren J; Felig P; Ahlborg G; Jorfeldt L
    J Clin Invest; 1971 Dec; 50(12):2715-25. PubMed ID: 5129319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of glucose ingestion on fuel-hormone response during prolonged exercise.
    Ahlborg G; Felig P
    J Appl Physiol; 1976 Nov; 41(5 Pt. 1):683-8. PubMed ID: 993155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Splanchnic and leg exchange of glucose, amino acids, and free fatty acids during exercise in diabetes mellitus.
    Wahren J; Hagenfeldt L; Felig P
    J Clin Invest; 1975 Jun; 55(6):1303-14. PubMed ID: 1133176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variable effects of beta-adrenoceptor blockade on muscle blood flow during exercise.
    Gullestad L; Hallén J; Sejersted OM
    Acta Physiol Scand; 1993 Nov; 149(3):257-71. PubMed ID: 7906074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism for glycogenolysis in nonexercising human muscle during and after exercise.
    Ahlborg G
    Am J Physiol; 1985 May; 248(5 Pt 1):E540-5. PubMed ID: 3993774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Splanchnic and peripheral glucose and lactate metabolism during and after prolonged arm exercise.
    Ahlborg G; Wahren J; Felig P
    J Clin Invest; 1986 Mar; 77(3):690-9. PubMed ID: 3512600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Splanchnic and renal vasoconstrictor and metabolic responses to neuropeptide Y in resting and exercising man.
    Ahlborg G; Weitzberg E; Sollevi A; Lundberg JM
    Acta Physiol Scand; 1992 Jun; 145(2):139-49. PubMed ID: 1636443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulation of dietary carbohydrate and muscle glycogen affects glucose uptake during exercise when fat oxidation is impaired by beta-adrenergic blockade.
    Zderic TW; Schenk S; Davidson CJ; Byerley LO; Coyle EF
    Am J Physiol Endocrinol Metab; 2004 Dec; 287(6):E1195-201. PubMed ID: 15315908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of beta-adrenergic blockade on plasma lactate concentration during exercise at high altitude.
    Young AJ; Young PM; McCullough RE; Moore LG; Cymerman A; Reeves JT
    Eur J Appl Physiol Occup Physiol; 1991; 63(5):315-22. PubMed ID: 1685447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of beta-adrenergic receptor stimulation and blockade on substrate metabolism during submaximal exercise.
    Mora-Rodriguez R; Hodgkinson BJ; Byerley LO; Coyle EF
    Am J Physiol Endocrinol Metab; 2001 May; 280(5):E752-60. PubMed ID: 11287358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal muscle glycolysis during submaximal exercise following acute beta-adrenergic blockade in man.
    Kaiser P; Tesch PA; Thorsson A; Karlsson J; Kaijser L
    Acta Physiol Scand; 1985 Mar; 123(3):285-91. PubMed ID: 2998155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic and thermodynamic responses to dehydration-induced reductions in muscle blood flow in exercising humans.
    González-Alonso J; Calbet JA; Nielsen B
    J Physiol; 1999 Oct; 520 Pt 2(Pt 2):577-89. PubMed ID: 10523424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High lactate and NH3 release during arm vs. leg exercise is not due to beta-adrenoceptor stimulation.
    Jensen-Urstad M; Ahlborg G; Sahlin K
    J Appl Physiol (1985); 1993 Jun; 74(6):2860-7. PubMed ID: 8396108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of beta-adrenergic receptor blockade on glycogenolysis during exercise.
    Juhlin-Dannfelt AC; Terblanche SE; Fell RD; Young JC; Holloszy JO
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Sep; 53(3):549-54. PubMed ID: 6127333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Splanchnic glucose metabolism during leg exercise in 60-hour-fasted human subjects.
    Björkman O; Eriksson LS
    Am J Physiol; 1983 Nov; 245(5 Pt 1):E443-8. PubMed ID: 6638171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of endurance training on hepatic glycogenolysis and gluconeogenesis during prolonged exercise in men.
    Coggan AR; Swanson SC; Mendenhall LA; Habash DL; Kien CL
    Am J Physiol; 1995 Mar; 268(3 Pt 1):E375-83. PubMed ID: 7900783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.