These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 7912169)

  • 1. Effects of oxidant exposure on substrate utilization and high-energy phosphates in isolated rat hearts.
    Burton KP; Jones JG; Le TH; Sherry AD; Malloy CR
    Circ Res; 1994 Jul; 75(1):97-104. PubMed ID: 7912169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of different oxidative insults on intermediary metabolism in isolated perfused rat hearts.
    Jones JG; Le TH; Storey CJ; Sherry AD; Malloy CR; Burton KP
    Free Radic Biol Med; 1996; 20(4):515-23. PubMed ID: 8904292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of exogenous substrates to acetyl coenzyme A: measurement by 13C NMR under non-steady-state conditions.
    Malloy CR; Thompson JR; Jeffrey FM; Sherry AD
    Biochemistry; 1990 Jul; 29(29):6756-61. PubMed ID: 1975750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipoamide influences substrate selection in post-ischaemic perfused rat hearts.
    Sumegi B; Butwell NB; Malloy CR; Sherry AD
    Biochem J; 1994 Jan; 297 ( Pt 1)(Pt 1):109-13. PubMed ID: 7904156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid metabolism and contractile function in the reperfused myocardium. Multinuclear NMR studies of isolated rabbit hearts.
    Johnston DL; Lewandowski ED
    Circ Res; 1991 Mar; 68(3):714-25. PubMed ID: 1742864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of vanadate on glycolysis, intracellular sodium, and pH in perfused rat hearts.
    Geraldes CF; Castro MM; Sherry AD; Ramasamy R
    Mol Cell Biochem; 1997 May; 170(1-2):53-63. PubMed ID: 9144318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 31P-NMR of high-energy phosphates in perfused rat heart during metabolic acidosis.
    Jelicks LA; Gupta R
    Am J Physiol; 1992 Sep; 263(3 Pt 2):H903-9. PubMed ID: 1415618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alterations in substrate utilization in the reperfused myocardium: a direct analysis by 13C NMR.
    Sherry AD; Malloy CR; Zhao P; Thompson JR
    Biochemistry; 1992 May; 31(20):4833-7. PubMed ID: 1350466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear magnetic resonance studies of cationic and energetic alterations with oxidant stress in the perfused heart. Modulation with pyruvate and lactate.
    Yanagida S; Luo CS; Doyle M; Pohost GM; Pike MM
    Circ Res; 1995 Oct; 77(4):773-83. PubMed ID: 7554125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced substrate oxidation in postischemic myocardium: 13C and 31P NMR analyses.
    Lewandowski ED; Johnston DL
    Am J Physiol; 1990 May; 258(5 Pt 2):H1357-65. PubMed ID: 2337171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon-13 and phosphorus-31 nuclear magnetic resonance studies of myocardial metabolism in live guinea pigs.
    Neurohr KJ; Shulman RG
    Adv Myocardiol; 1985; 6():185-93. PubMed ID: 2859645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-invasive measurements of myocardial carbon metabolism using in vivo 13C NMR spectroscopy.
    Ziegler A; Zaugg CE; Buser PT; Seelig J; Künnecke B
    NMR Biomed; 2002 May; 15(3):222-34. PubMed ID: 11968138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: assessment by 31P-NMR spectroscopy.
    Williams JP; Headrick JP
    Biochim Biophys Acta; 1996 Aug; 1276(1):71-9. PubMed ID: 8764892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of inosine on glycolysis and contracture during myocardial ischemia.
    Lewandowski ED; Johnston DL; Roberts R
    Circ Res; 1991 Feb; 68(2):578-87. PubMed ID: 1991356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic studies of pyruvate- and lactate-perfused guinea pig hearts by 13C NMR. Determination of substrate preference by glutamate isotopomer distribution.
    Sherry AD; Nunnally RL; Peshock RM
    J Biol Chem; 1985 Aug; 260(16):9272-9. PubMed ID: 4019474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac responses to induced lactate oxidation: NMR analysis of metabolic equilibria.
    Lewandowski ED; Damico LA; White LT; Yu X
    Am J Physiol; 1995 Jul; 269(1 Pt 2):H160-8. PubMed ID: 7631845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon flux through citric acid cycle pathways in perfused heart by 13C NMR spectroscopy.
    Malloy CR; Sherry AD; Jeffrey FM
    FEBS Lett; 1987 Feb; 212(1):58-62. PubMed ID: 2879743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyruvate and lactate metabolism in the in vivo dog heart.
    Laughlin MR; Taylor J; Chesnick AS; DeGroot M; Balaban RS
    Am J Physiol; 1993 Jun; 264(6 Pt 2):H2068-79. PubMed ID: 8322935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rates of glycolysis and glycogenolysis during ischemia in glucose-insulin-potassium-treated perfused hearts: A 13C, 31P nuclear magnetic resonance study.
    Hoekenga DE; Brainard JR; Hutson JY
    Circ Res; 1988 Jun; 62(6):1065-74. PubMed ID: 3289783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indexing tricarboxylic acid cycle flux in intact hearts by carbon-13 nuclear magnetic resonance.
    Weiss RG; Gloth ST; Kalil-Filho R; Chacko VP; Stern MD; Gerstenblith G
    Circ Res; 1992 Feb; 70(2):392-408. PubMed ID: 1735137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.