These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 7912419)

  • 1. Optical imaging of the in vitro guinea pig piriform cortex activity using a voltage-sensitive dye.
    Sugitani M; Sugai T; Tanifuji M; Murase K; Onoda N
    Neurosci Lett; 1994 Jan; 165(1-2):215-8. PubMed ID: 7912419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal propagation from piriform cortex to the endopiriform nucleus in vitro revealed by optical imaging.
    Sugitani M; Sugai T; Tanifuji M; Onoda N
    Neurosci Lett; 1994 Apr; 171(1-2):175-8. PubMed ID: 8084485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical recording of cortical activity after in vitro perfusion of cerebral arteries with a voltage-sensitive dye.
    de Curtis M; Takashima I; Iijima T
    Brain Res; 1999 Aug; 837(1-2):314-9. PubMed ID: 10434019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping patterns of neuronal activity and seizure propagation by imaging intrinsic optical signals in the isolated whole brain of the guinea-pig.
    Federico P; Borg SG; Salkauskus AG; MacVicar BA
    Neuroscience; 1994 Feb; 58(3):461-80. PubMed ID: 8170533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical imaging of dynamic horizontal spread of excitation in rat auditory cortex slices.
    Kubota M; Sugimoto S; Horikawa J; Nasu M; Taniguchi I
    Neurosci Lett; 1997 Nov; 237(2-3):77-80. PubMed ID: 9453219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Olfactory information converges in the amygdaloid cortex via the piriform and entorhinal cortices: observations in the guinea pig isolated whole-brain preparation.
    Kajiwara R; Tominaga T; Takashima I
    Eur J Neurosci; 2007 Jun; 25(12):3648-58. PubMed ID: 17610584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Olfactory bulb networks revealed by lateral olfactory tract stimulation in the in vitro isolated guinea-pig brain.
    Uva L; Strowbridge BW; de Curtis M
    Neuroscience; 2006 Oct; 142(2):567-77. PubMed ID: 16887275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Associative synaptic potentials in the piriform cortex of the isolated guinea-pig brain in vitro.
    Biella G; de Curtis M
    Eur J Neurosci; 1995 Jan; 7(1):54-64. PubMed ID: 7711937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. II. Spatial and temporal properties of responses evoked by electric stimulation.
    Cinelli AR; Kauer JS
    J Neurophysiol; 1995 May; 73(5):2033-52. PubMed ID: 7623098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABAA and glutamate receptor involvement in dendrodendritic synaptic interactions from salamander olfactory bulb.
    Wellis DP; Kauer JS
    J Physiol; 1993 Sep; 469():315-39. PubMed ID: 7903696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of the olfactory fiber input into the olfactory tubercle of the in vitro isolated guinea pig brain.
    Carriero G; Uva L; Gnatkovsky V; de Curtis M
    J Neurophysiol; 2009 Mar; 101(3):1613-9. PubMed ID: 18922946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epileptiform activity induced by 4-aminopyridine in guinea-pig and rat neocortices.
    Mattia D; Hwa GG; Avoli M
    Neurosci Lett; 1993 May; 154(1-2):157-60. PubMed ID: 8103197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons.
    Miyakawa H; Lev-Ram V; Lasser-Ross N; Ross WN
    J Neurophysiol; 1992 Oct; 68(4):1178-89. PubMed ID: 1359027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between associative synaptic potentials in the piriform cortex of the in vitro isolated guinea pig brain.
    Biella G; Panzica F; de Curtis M
    Eur J Neurosci; 1996 Jul; 8(7):1350-7. PubMed ID: 8758942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kindling-induced epileptiform potentials in piriform cortex slices originate in the underlying endopiriform nucleus.
    Hoffman WH; Haberly LB
    J Neurophysiol; 1996 Sep; 76(3):1430-8. PubMed ID: 8890264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convergence of olfactory and gustatory connections onto the endopiriform nucleus in the rat.
    Fu W; Sugai T; Yoshimura H; Onoda N
    Neuroscience; 2004; 126(4):1033-41. PubMed ID: 15207336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronized GABAergic IPSPs recorded in the neocortex after blockade of synaptic transmission mediated by excitatory amino acids.
    Aram JA; Michelson HB; Wong RK
    J Neurophysiol; 1991 May; 65(5):1034-41. PubMed ID: 1678421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mono-and multi-synaptic origin of the early surface-negative wave recorded from guinea-pig olfactory cortex in vitro.
    Gilbey MP; Wooster MJ
    J Physiol; 1979 Aug; 293():153-72. PubMed ID: 501582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Odor-concentration coding in the guinea-pig piriform cortex.
    Sugai T; Miyazawa T; Fukuda M; Yoshimura H; Onoda N
    Neuroscience; 2005; 130(3):769-81. PubMed ID: 15590159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage imaging of epileptiform activity in slices from rat piriform cortex: onset and propagation.
    Demir R; Haberly LB; Jackson MB
    J Neurophysiol; 1998 Nov; 80(5):2727-42. PubMed ID: 9819277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.