BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 7912695)

  • 1. Effects of reduced levels of GroE chaperones on protein metabolism: enhanced synthesis of heat shock proteins during steady-state growth of Escherichia coli.
    Kanemori M; Mori H; Yura T
    J Bacteriol; 1994 Jul; 176(14):4235-42. PubMed ID: 7912695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable expression plasmid for high-level production of GroE molecular chaperones in large-scale cultures.
    Kalbach CE; Gatenby AA
    Enzyme Microb Technol; 1993 Sep; 15(9):730-5. PubMed ID: 7765313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor sigma 32.
    Zhou YN; Kusukawa N; Erickson JW; Gross CA; Yura T
    J Bacteriol; 1988 Aug; 170(8):3640-9. PubMed ID: 2900239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat shock protein GroE of Escherichia coli: key protective roles against thermal stress.
    Kusukawa N; Yura T
    Genes Dev; 1988 Jul; 2(7):874-82. PubMed ID: 2905317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-induction of DNA relaxation and synthesis of DnaK and GroEL proteins in Escherichia coli by expression of LetD (CcdB) protein, an inhibitor of DNA gyrase encoded by the F factor.
    Kaneko T; Mizushima T; Ohtsuka Y; Kurokawa K; Kataoka K; Miki T; Sekimizu K
    Mol Gen Genet; 1996 Mar; 250(5):593-600. PubMed ID: 8676862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis.
    Mogk A; Homuth G; Scholz C; Kim L; Schmid FX; Schumann W
    EMBO J; 1997 Aug; 16(15):4579-90. PubMed ID: 9303302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures.
    Fayet O; Ziegelhoffer T; Georgopoulos C
    J Bacteriol; 1989 Mar; 171(3):1379-85. PubMed ID: 2563997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of heat shock proteins by abnormal proteins results from stabilization and not increased synthesis of sigma 32 in Escherichia coli.
    Kanemori M; Mori H; Yura T
    J Bacteriol; 1994 Sep; 176(18):5648-53. PubMed ID: 7916010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and characterization of the groE heat-shock operon of the marine bacterium Vibrio harveyi.
    Kuchanny-Ardigò D; Lipińska B
    Microbiology (Reading); 2003 Jun; 149(Pt 6):1483-1492. PubMed ID: 12777488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalysis, commitment and encapsulation during GroE-mediated folding.
    Beissinger M; Rutkat K; Buchner J
    J Mol Biol; 1999 Jun; 289(4):1075-92. PubMed ID: 10369783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Escherichia coli groE chaperonins.
    Georgopoulos C; Ang D
    Semin Cell Biol; 1990 Feb; 1(1):19-25. PubMed ID: 1983267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular analysis of the Haemophilus ducreyi groE heat shock operon.
    Parsons LM; Waring AL; Shayegani M
    Infect Immun; 1992 Oct; 60(10):4111-8. PubMed ID: 1356926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that GroEL, not sigma 32, is involved in transcriptional regulation of the Vibrio fischeri luminescence genes in Escherichia coli.
    Dolan KM; Greenberg EP
    J Bacteriol; 1992 Aug; 174(15):5132-5. PubMed ID: 1352769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refolding of yeast enolase in the presence of the chaperonin GroE. The nucleotide specificity of GroE and the role of GroES.
    Kubo T; Mizobata T; Kawata Y
    J Biol Chem; 1993 Sep; 268(26):19346-51. PubMed ID: 8103517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient shut off of Escherichia coli heat shock protein synthesis upon temperature shift down.
    Taura T; Kusukawa N; Yura T; Ito K
    Biochem Biophys Res Commun; 1989 Aug; 163(1):438-43. PubMed ID: 2570575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sigma 32-dependent promoter activity in vivo: sequence determinants of the groE promoter.
    Wang Y; deHaseth PL
    J Bacteriol; 2003 Oct; 185(19):5800-6. PubMed ID: 13129951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaperonin GroE and ADP facilitate the folding of various proteins and protect against heat inactivation.
    Kawata Y; Nosaka K; Hongo K; Mizobata T; Nagai J
    FEBS Lett; 1994 May; 345(2-3):229-32. PubMed ID: 7911090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes.
    Schulz A; Schumann W
    J Bacteriol; 1996 Feb; 178(4):1088-93. PubMed ID: 8576042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GroE-mediated folding of bacterial luciferases in vivo.
    Escher A; Szalay AA
    Mol Gen Genet; 1993 Apr; 238(1-2):65-73. PubMed ID: 8097558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli.
    Kusukawa N; Yura T; Ueguchi C; Akiyama Y; Ito K
    EMBO J; 1989 Nov; 8(11):3517-21. PubMed ID: 2573517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.