These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The effect of phenazine methosulfate-ascorbate on bacterial active transport and adenosine triphosphate formation: inhibition of Pseudomonas aeruginosa and stimulation of Escherichia coli. Eagon RG; Hodge TW; Rake JB; Yarbrough JM Can J Microbiol; 1979 Jul; 25(7):798-802. PubMed ID: 113071 [TBL] [Abstract][Full Text] [Related]
3. Reduction of nonheme iron in the respiratory chain of Escherichia coli. Bragg PD Can J Biochem; 1970 Jul; 48(7):777-83. PubMed ID: 4326918 [No Abstract] [Full Text] [Related]
4. Phenazine methosulfate stimulation of ouabain-sensitive Rb+ uptake by HeLa cells: effects of respiratory inhibitors, anaerobiosis, and ascorbate. Ikehara T; Yamaguchi H; Hosokawa K; Kaku M; Miyamoto H J Cell Biochem; 1985; 28(4):273-80. PubMed ID: 4055918 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms of active transport in isolated membrane vesicles. 2. The coupling of reduced phenazine methosulfate to the concentrative uptake of beta-galactosides and amino acids. Konings WN; Barnes EM; Kaback HR J Biol Chem; 1971 Oct; 246(19):5857-61. PubMed ID: 4331061 [No Abstract] [Full Text] [Related]
6. The inhibitory effect of the artificial electron donor system, phenazine methosulfate-ascorbate, on bacterial transport mechanisms. Eagon RG; Gitter BD; Rowe JJ J Supramol Struct; 1977; 7(1):49-59. PubMed ID: 415185 [TBL] [Abstract][Full Text] [Related]
7. Stimulation of proline transport by cupric ion in membrane vesicles from Mycobacterium phlei. Yankofsky SA; Brodie AF Biochem Biophys Res Commun; 1976 Mar; 69(2):455-61. PubMed ID: 178313 [No Abstract] [Full Text] [Related]
8. Evidence against proton gradient formation being the cause of chlorophyll fluorescence quenching by N-methylphenazonium methosulfate. Slovacek RE; Bannister TT Biochim Biophys Acta; 1976 Apr; 430(1):165-81. PubMed ID: 4143 [TBL] [Abstract][Full Text] [Related]
9. Site of interaction between phenazine methosulphate and the respiratory chain of Bacillus subtilis. Bisschop A; Bergsma J; Konings WN Eur J Biochem; 1979 Jan; 93(2):369-74. PubMed ID: 218814 [No Abstract] [Full Text] [Related]
10. Effects of redox agents on the Ca2+-activated K+ channel. García-Sancho J; Herreros B Cell Calcium; 1983 Dec; 4(5-6):493-7. PubMed ID: 6323010 [TBL] [Abstract][Full Text] [Related]
11. Sodium-dependent glutamate transport in membrane vesicles of Escherichia coli K-12. Kahane S; Marcus M; Barash H; Halpern YS FEBS Lett; 1975 Aug; 56(2):235-9. PubMed ID: 1098933 [No Abstract] [Full Text] [Related]
12. Transport of succinate in Escherichia coli. II. Characteristics of uptake and energy coupling with transport in membrane preparations. Rayman MK; Lo TC; Sanwal BD J Biol Chem; 1972 Oct; 247(19):6332-9. PubMed ID: 4568614 [No Abstract] [Full Text] [Related]
13. The involvement of the membrane oxidoreduction system in stimulating amino acid uptake in Ehrlich ascites tumor cells. Yamamoto S; Kawasaki T Biochim Biophys Acta; 1981 Jun; 644(2):192-200. PubMed ID: 7260073 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 2. Effect of imposed delata psi, delta pH, and Delta mu H+. Kaczorowski GJ; Robertson DE; Kaback HR Biochemistry; 1979 Aug; 18(17):3697-704. PubMed ID: 38837 [No Abstract] [Full Text] [Related]
15. Phenazine methosulfate mediated photoinactivation of some energy linked reactions in Rhodospirillum rubrum. Kerber NL; Pucheu NL; García AF Biochem Biophys Res Commun; 1978 Mar; 81(2):667-71. PubMed ID: 208532 [No Abstract] [Full Text] [Related]
16. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. Valinomycin-induced rubidium transport. Lombardi FJ; Reeves JP; Kaback HR J Biol Chem; 1973 May; 248(10):3551-65. PubMed ID: 4573982 [No Abstract] [Full Text] [Related]
17. Reconstitution of photosynthetic electron transport and photophosphorylation in cytochrome-c2-deficient membrane preparation of Rhodopseudomonas capsulata. Hochman A; Carmeli C Arch Biochem Biophys; 1977 Feb; 179(1):349-59. PubMed ID: 190950 [No Abstract] [Full Text] [Related]
18. Energization of energy-dependent transhydrogenase of Escherichia coli at a second site of energy conservation. Bragg PD; Hou C Arch Biochem Biophys; 1974 Aug; 163(2):614-6. PubMed ID: 4153348 [No Abstract] [Full Text] [Related]
19. Determination of the absolute number of Escherichia coli membrane vesicles that catalyze active transport. Short SA; Kaback HR; Kaczorowski G; Fisher J; Walsh CT; Silverstein SC Proc Natl Acad Sci U S A; 1974 Dec; 71(12):5032-6. PubMed ID: 4612538 [TBL] [Abstract][Full Text] [Related]
20. Generation of free radicals from phenazine methosulfate, streptonigrin, and riboflavin in bacterial suspensions. White JR; Dearman HH Proc Natl Acad Sci U S A; 1965 Sep; 54(3):887-91. PubMed ID: 4286419 [No Abstract] [Full Text] [Related] [Next] [New Search]