These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 7912831)

  • 1. Identification of residues in the Mu transposase essential for catalysis.
    Baker TA; Luo L
    Proc Natl Acad Sci U S A; 1994 Jul; 91(14):6654-8. PubMed ID: 7912831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete transposition requires four active monomers in the mu transposase tetramer.
    Baker TA; Kremenstova E; Luo L
    Genes Dev; 1994 Oct; 8(20):2416-28. PubMed ID: 7958906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The wing of the enhancer-binding domain of Mu phage transposase is flexible and is essential for efficient transposition.
    Clubb RT; Mizuuchi M; Huth JR; Omichinski JG; Savilahti H; Mizuuchi K; Clore GM; Gronenborn AM
    Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1146-50. PubMed ID: 8577730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Step-arrest mutants of phage Mu transposase. Implications in DNA-protein assembly, Mu end cleavage, and strand transfer.
    Kim K; Namgoong SY; Jayaram M; Harshey RM
    J Biol Chem; 1995 Jan; 270(3):1472-9. PubMed ID: 7836417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration.
    Rice P; Mizuuchi K
    Cell; 1995 Jul; 82(2):209-20. PubMed ID: 7628012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positional information within the Mu transposase tetramer: catalytic contributions of individual monomers.
    Yang JY; Jayaram M; Harshey RM
    Cell; 1996 May; 85(3):447-55. PubMed ID: 8616899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel DNA binding and nuclease activity in domain III of Mu transposase: evidence for a catalytic region involved in donor cleavage.
    Wu Z; Chaconas G
    EMBO J; 1995 Aug; 14(15):3835-43. PubMed ID: 7641701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mu transpositional recombination: donor DNA cleavage and strand transfer in trans by the Mu transposase.
    Savilahti H; Mizuuchi K
    Cell; 1996 Apr; 85(2):271-80. PubMed ID: 8612279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disassembly of the Mu transposase tetramer by the ClpX chaperone.
    Levchenko I; Luo L; Baker TA
    Genes Dev; 1995 Oct; 9(19):2399-408. PubMed ID: 7557391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Division of labor among monomers within the Mu transposase tetramer.
    Baker TA; Mizuuchi M; Savilahti H; Mizuuchi K
    Cell; 1993 Aug; 74(4):723-33. PubMed ID: 8395353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of functionally important sites in the bacteriophage Mu transposase protein.
    Ulycznyj PI; Forghani F; DuBow MS
    Mol Gen Genet; 1994 Feb; 242(3):272-9. PubMed ID: 8107674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MuA transposase separates DNA sequence recognition from catalysis.
    Goldhaber-Gordon I; Early MH; Baker TA
    Biochemistry; 2003 Dec; 42(49):14633-42. PubMed ID: 14661976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial transposases and retroviral integrases.
    Polard P; Chandler M
    Mol Microbiol; 1995 Jan; 15(1):13-23. PubMed ID: 7752887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA-promoted assembly of the active tetramer of the Mu transposase.
    Baker TA; Mizuuchi K
    Genes Dev; 1992 Nov; 6(11):2221-32. PubMed ID: 1330829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of the Mu transposase. Contributions of two distinct regions of domain II to recombination.
    Krementsova E; Giffin MJ; Pincus D; Baker TA
    J Biol Chem; 1998 Nov; 273(47):31358-65. PubMed ID: 9813045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase.
    Kim DR; Dai Y; Mundy CL; Yang W; Oettinger MA
    Genes Dev; 1999 Dec; 13(23):3070-80. PubMed ID: 10601033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Tn7 transposase is a heteromeric complex in which DNA breakage and joining activities are distributed between different gene products.
    Sarnovsky RJ; May EW; Craig NL
    EMBO J; 1996 Nov; 15(22):6348-61. PubMed ID: 8947057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic center quest: comparison of transposases belonging to the Tn3 family reveals an invariant triad of acidic amino acid residues.
    Yurieva O; Nikiforov V
    Biochem Mol Biol Int; 1996 Feb; 38(1):15-20. PubMed ID: 8932514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases.
    Kulkosky J; Jones KS; Katz RA; Mack JP; Skalka AM
    Mol Cell Biol; 1992 May; 12(5):2331-8. PubMed ID: 1314954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancer-independent variants of phage Mu transposase: enhancer-specific stimulation of catalytic activity by a partner transposase.
    Yang JY; Jayaram M; Harshey RM
    Genes Dev; 1995 Oct; 9(20):2545-55. PubMed ID: 7590234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.