These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 791285)

  • 1. The reaction of epoxides with yeast glyceraldehyde--3--phosphate dehydrogenase.
    McCaul S; Byers LD
    Biochem Biophys Res Commun; 1976 Oct; 72(3):1028-34. PubMed ID: 791285
    [No Abstract]   [Full Text] [Related]  

  • 2. Inactivation of glyceraldehyde-3-phosphate dehydrogenase and yeast alcohol dehydrogenase by arene oxides.
    Bruice PY; Wilson SC; Bruice TC
    Biochemistry; 1978 May; 17(9):1662-9. PubMed ID: 26383
    [No Abstract]   [Full Text] [Related]  

  • 3. Interaction of the substrate phosphate substituent with glyceraldehyde-3-phosphate dehydrogenase.
    Kanchuger MS; Leong PM; Byers LD
    Biochemistry; 1979 Oct; 18(20):4373-9. PubMed ID: 385052
    [No Abstract]   [Full Text] [Related]  

  • 4. The effect of cyclic 3',5'-adenosine monophosphate on yeast glyceraldehyde-3-phosphate dehydrogenase. II. Initial velocity kinetic studies.
    Rock MG; Cook RA
    Biochemistry; 1974 Sep; 13(20):4200-4. PubMed ID: 4370446
    [No Abstract]   [Full Text] [Related]  

  • 5. Immobilized glyceraldehyde-3-phosphate dehydrogenase forms a complex with phosphoglycerate kinase.
    Ashmarina LI; Muronetz VI; Nagradova NK
    Biochem Int; 1984 Oct; 9(4):511-21. PubMed ID: 6393989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between structure and chemical reactivity in D-glyceraldehyde 3-phosphate dehydrogenase. Trinitrophenylation of the lysine residues in yeast, sturgeon and rabbit muscle enzyme.
    Nakano M; Foucault G; Pudles J
    J Mol Biol; 1976 Aug; 105(2):275-91. PubMed ID: 184288
    [No Abstract]   [Full Text] [Related]  

  • 7. Specific modification of a single cysteine residue in both bovine liver glutamate dehydrogenase and yeast glyceraldehyde-3-phosphate dehydrogenase. Difference in the mode of modification by pyrene maleimide.
    Rasched I; Bayne S
    Biochim Biophys Acta; 1982 Oct; 707(2):267-72. PubMed ID: 6753939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction of cyclic 3',5'-adenosine monophosphate with yeast glyceraldehyde-3-phosphate dehydrogenase. I. Equilibrium dialysis studies.
    Milne J; Cook RA
    Biochemistry; 1974 Sep; 13(20):4196-9. PubMed ID: 4370478
    [No Abstract]   [Full Text] [Related]  

  • 9. Analysis of the allosteric basis for positive and negative co-operativity and half-of-the-sites reactivity in yeast and rabbit muscle glyceraldehyde 3-phosphate dehydrogenase.
    Herzfeld J; Schlesinger PA
    J Mol Biol; 1975 Oct; 97(4):483-517. PubMed ID: 171419
    [No Abstract]   [Full Text] [Related]  

  • 10. Half-of-the sites reactivity in the catalytic mechanism of yeast glyceraldehyde 3-phosphate dehydrogenase.
    Stallcup WB; Koshland DE
    J Mol Biol; 1973 Oct; 80(1):77-91. PubMed ID: 4361748
    [No Abstract]   [Full Text] [Related]  

  • 11. Half-of-the sites reactivity and negative co-operativity: the case of yeast glyceraldehyde 3-phosphate dehydrogenase.
    Stallcup WB; Koshland DE
    J Mol Biol; 1973 Oct; 80(1):41-62. PubMed ID: 4594141
    [No Abstract]   [Full Text] [Related]  

  • 12. Reactive lysines of yeast glyceraldehyde 3-phosphate dehydrogenase. Attachment of a reporter group to a specific non-essential residue.
    Stallcup WB; Koshland DE
    J Mol Biol; 1973 Oct; 80(1):63-75. PubMed ID: 4594142
    [No Abstract]   [Full Text] [Related]  

  • 13. Essential arginine residues in D-glyceraldehyde-3-phosphate dehydrogenase.
    Nagradova NK; Asryants RA
    Biochim Biophys Acta; 1975 Mar; 386(1):365-8. PubMed ID: 164934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Comparative study of glyceraldehyde-3-phosphate dehydrogenases isolated from rabbit skeletal muscles and baker's yeast using cationic fluorescent probes].
    Klichko VI; Ivanov MV; Nagradova NK
    Biokhimiia; 1986 Sep; 51(9):1465-75. PubMed ID: 3533163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of lysine-183 in D-glyceraldehyde-3-phosphate dehydrogenases. Properties of the N-acetylated yeast, sturgeon muscle and rabbit muscle enzymes.
    Foucault G; Nakano M; Pudles J
    Eur J Biochem; 1978 Feb; 83(1):113-23. PubMed ID: 342241
    [No Abstract]   [Full Text] [Related]  

  • 16. I-Anilino-8-naphthalene sulfonate as a coenzyme-competitive inhibitor of yeast glyceraldehyde-3-phosphate dehydrogenase: multiple inhibition studies.
    Nagradova NK; Asryants RA; Ivanov MV
    Biochim Biophys Acta; 1972 Jun; 268(3):622-8. PubMed ID: 4338664
    [No Abstract]   [Full Text] [Related]  

  • 17. Mechanism of reactivation and refolding of glyceraldehyde-3-phosphate dehydrogenase from yeast after denaturation and dissociation.
    Rudolph R; Heider I; Jaenicke R
    Eur J Biochem; 1977 Dec; 81(3):563-70. PubMed ID: 202463
    [No Abstract]   [Full Text] [Related]  

  • 18. Auramine O as a conformational probe to study glyceraldehyde 3-phosphate dehydrogenase.
    Ivanov MV; Klichko VI; Nikulin IR; Asryants RA; Nagradova NK
    Eur J Biochem; 1982 Jul; 125(2):291-7. PubMed ID: 6749493
    [No Abstract]   [Full Text] [Related]  

  • 19. [Fluorimetric study of immobilized yeast D-glyceraldehyde-3-phosphatase and its subunits. Binding of NAD+].
    Muronets VI; Ashmarina DI; Permiakov EA; Nagradova NK
    Dokl Akad Nauk SSSR; 1987; 293(3):732-6. PubMed ID: 3556120
    [No Abstract]   [Full Text] [Related]  

  • 20. [Use of immobilization for investigation of glyceraldehyde 3-phosphate dehydrogenase. Immobilized tetramers].
    Muronets VI; Cherednikova TV; Nagradova NK
    Biokhimiia; 1981 Oct; 46(10):1731-9. PubMed ID: 7030410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.