These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 7913390)
21. Cysteamine-induced depletion of somatostatin produces differential cognitive deficits in rats. DeNoble VJ; Hepler DJ; Barto RA Brain Res; 1989 Mar; 482(1):42-8. PubMed ID: 2565139 [TBL] [Abstract][Full Text] [Related]
22. Attenuation of scopolamine-induced and age-associated memory impairments by the sigma and 5-hydroxytryptamine(1A) receptor agonist OPC-14523 (1-[3-[4-(3-chlorophenyl)-1-piperazinyl]propyl]-5-methoxy-3,4-dihydro-2[1H]-quinolinone monomethanesulfonate). Tottori K; Nakai M; Uwahodo Y; Miwa T; Yamada S; Oshiro Y; Kikuchi T; Altar CA J Pharmacol Exp Ther; 2002 Apr; 301(1):249-57. PubMed ID: 11907181 [TBL] [Abstract][Full Text] [Related]
23. Continuous physostigmine infusion in rats with excitotoxic lesions of the nucleus basalis magnocellularis: effects on performance in the water maze task and cortical cholinergic markers. Mandel RJ; Chen AD; Connor DJ; Thal LJ J Pharmacol Exp Ther; 1989 Nov; 251(2):612-9. PubMed ID: 2810114 [TBL] [Abstract][Full Text] [Related]
24. The role of the AT4 and cholinergic systems in the Nucleus Basalis Magnocellularis (NBM): effects on spatial memory. Wilson WL; Munn C; Ross RC; Harding JW; Wright JW Brain Res; 2009 May; 1272():25-31. PubMed ID: 19328191 [TBL] [Abstract][Full Text] [Related]
25. Linopirdine (DuP 996) improves performance in several tests of learning and memory by modulation of cholinergic neurotransmission. Fontana DJ; Inouye GT; Johnson RM Pharmacol Biochem Behav; 1994 Dec; 49(4):1075-82. PubMed ID: 7886078 [TBL] [Abstract][Full Text] [Related]
26. Interactions of forebrain cholinergic and somatostatinergic systems in the rat. Haroutunian V; Kanof PD; Davis KL Brain Res; 1989 Sep; 496(1-2):98-104. PubMed ID: 2804656 [TBL] [Abstract][Full Text] [Related]
27. NS-3, a TRH-analog, reverses memory disruption by stimulating cholinergic and noradrenergic systems. Ogasawara T; Itoh Y; Tamura M; Ukai Y; Yoshikuni Y; Kimura K Pharmacol Biochem Behav; 1996 Feb; 53(2):391-9. PubMed ID: 8808149 [TBL] [Abstract][Full Text] [Related]
28. Effects of histamine and cholinergic systems on memory retention of passive avoidance learning in rats. Eidi M; Zarrindast MR; Eidi A; Oryan S; Parivar K Eur J Pharmacol; 2003 Mar; 465(1-2):91-6. PubMed ID: 12650837 [TBL] [Abstract][Full Text] [Related]
29. The 5-HT(6) receptor antagonist SB-271046 reverses scopolamine-disrupted consolidation of a passive avoidance task and ameliorates spatial task deficits in aged rats. Foley AG; Murphy KJ; Hirst WD; Gallagher HC; Hagan JJ; Upton N; Walsh FS; Regan CM Neuropsychopharmacology; 2004 Jan; 29(1):93-100. PubMed ID: 14571256 [TBL] [Abstract][Full Text] [Related]
30. The role of the central cholinergic projections in cognition: implications of the effects of scopolamine on discrimination learning by monkeys. Harder JA; Baker HF; Ridley RM Brain Res Bull; 1998; 45(3):319-26. PubMed ID: 9510426 [TBL] [Abstract][Full Text] [Related]
31. Scopolamine-induced learning impairment reversed by physostigmine in zebrafish. Kim YH; Lee Y; Kim D; Jung MW; Lee CJ Neurosci Res; 2010 Jun; 67(2):156-61. PubMed ID: 20298728 [TBL] [Abstract][Full Text] [Related]
33. Effects of sustained release formulation of thyrotropin-releasing hormone on learning impairments caused by scopolamine and AF64A in rodents. Miyamoto M; Hirai K; Takahashi H; Kato K; Nishiyama M; Okada H; Nagaoka A Eur J Pharmacol; 1993 Jul; 238(2-3):181-9. PubMed ID: 8405091 [TBL] [Abstract][Full Text] [Related]
34. Modulation of morphine state-dependent learning by muscarinic cholinergic receptors of the ventral tegmental area. Darbandi N; Rezayof A; Zarrindast MR Physiol Behav; 2008 Jul; 94(4):604-10. PubMed ID: 18479719 [TBL] [Abstract][Full Text] [Related]
35. Beneficial effects of ellagic acid against animal models of scopolamine- and diazepam-induced cognitive impairments. Mansouri MT; Farbood Y; Naghizadeh B; Shabani S; Mirshekar MA; Sarkaki A Pharm Biol; 2016 Oct; 54(10):1947-53. PubMed ID: 26828763 [TBL] [Abstract][Full Text] [Related]
36. Effects of central muscarinic blockade on passive avoidance: anterograde amnesia, state dependency, or both? Quirarte GL; Cruz-Morales SE; Cepeda A; García-Montañez M; Roldán-Roldán G; Prado-Alcalá RA Behav Neural Biol; 1994 Jul; 62(1):15-20. PubMed ID: 7945140 [TBL] [Abstract][Full Text] [Related]
37. Cholinergic manipulations and passive avoidance in the rat: effects on acquisition and recall. Wilson WJ; Cook JA Acta Neurobiol Exp (Wars); 1994; 54(4):377-91. PubMed ID: 7887188 [TBL] [Abstract][Full Text] [Related]
38. Reversal of extinction by scopolamine. Prado-Alcalá RA; Haiek M; Rivas S; Roldan-Roldan G; Quirarte GL Physiol Behav; 1994 Jul; 56(1):27-30. PubMed ID: 8084904 [TBL] [Abstract][Full Text] [Related]
39. The behavioral effects of heptyl physostigmine, a new cholinesterase inhibitor, in tests of long-term and working memory in rodents. Dawson GR; Bentley G; Draper F; Rycroft W; Iversen SD; Pagella PG Pharmacol Biochem Behav; 1991 Aug; 39(4):865-71. PubMed ID: 1763105 [TBL] [Abstract][Full Text] [Related]
40. A threshold for the protective effect of over-reinforced passive avoidance against scopolamine-induced amnesia. Cruz-Morales SE; Duran-Arevalo M; Diaz Del Guante MA; Quirarte G; Prado-Alcala RA Behav Neural Biol; 1992 May; 57(3):256-9. PubMed ID: 1616458 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]