These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 7913832)

  • 1. In vitro reconstitution of the 24-meric E2 inner core of bovine mitochondrial branched-chain alpha-keto acid dehydrogenase complex: requirement for chaperonins GroEL and GroES.
    Wynn RM; Davie JR; Zhi W; Cox RP; Chuang DT
    Biochemistry; 1994 Aug; 33(30):8962-8. PubMed ID: 7913832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaperonins groEL and groES promote assembly of heterotetramers (alpha 2 beta 2) of mammalian mitochondrial branched-chain alpha-keto acid decarboxylase in Escherichia coli.
    Wynn RM; Davie JR; Cox RP; Chuang DT
    J Biol Chem; 1992 Jun; 267(18):12400-3. PubMed ID: 1352285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms for GroEL/GroES-mediated folding of a large 86-kDa fusion polypeptide in vitro.
    Huang YS; Chuang DT
    J Biol Chem; 1999 Apr; 274(15):10405-12. PubMed ID: 10187830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-directed mutagenesis and functional analysis of the active-site residues of the E2 component of bovine branched-chain alpha-keto acid dehydrogenase complex.
    Meng M; Chuang DT
    Biochemistry; 1994 Nov; 33(43):12879-85. PubMed ID: 7947694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of GroEL/GroES with a heterodimeric intermediate during alpha 2beta 2 assembly of mitochondrial branched-chain alpha-ketoacid dehydrogenase. cis capping of the native-like 86-kDa intermediate by GroES.
    Song JL; Wynn RM; Chuang DT
    J Biol Chem; 2000 Jul; 275(29):22305-12. PubMed ID: 10764784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of E1 component of human branched-chain alpha-keto acid dehydrogenase complex in Escherichia coli by cotransformation with chaperonins GroEL and GroES.
    Wynn RM; Davie JR; Song JL; Chuang JL; Chuang DT
    Methods Enzymol; 2000; 324():179-91. PubMed ID: 10989429
    [No Abstract]   [Full Text] [Related]  

  • 7. Encapsulation of an 86-kDa assembly intermediate inside the cavities of GroEL and its single-ring variant SR1 by GroES.
    Song JL; Li J; Huang YS; Chuang DT
    J Biol Chem; 2003 Jan; 278(4):2515-21. PubMed ID: 12431983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and expression in Escherichia coli of mature E1 beta subunit of bovine mitochondrial branched-chain alpha-keto acid dehydrogenase complex. Mapping of the E1 beta-binding region on E2.
    Wynn RM; Chuang JL; Davie JR; Fisher CW; Hale MA; Cox RP; Chuang DT
    J Biol Chem; 1992 Jan; 267(3):1881-7. PubMed ID: 1730724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GroEL/GroES-dependent reconstitution of alpha2 beta2 tetramers of humanmitochondrial branched chain alpha-ketoacid decarboxylase. Obligatory interaction of chaperonins with an alpha beta dimeric intermediate.
    Chuang JL; Wynn RM; Song JL; Chuang DT
    J Biol Chem; 1999 Apr; 274(15):10395-404. PubMed ID: 10187829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conservation of primary structure in the lipoyl-bearing and dihydrolipoyl dehydrogenase binding domains of mammalian branched-chain alpha-keto acid dehydrogenase complex: molecular cloning of human and bovine transacylase (E2) cDNAs.
    Lau KS; Griffin TA; Hu CW; Chuang DT
    Biochemistry; 1988 Mar; 27(6):1972-81. PubMed ID: 2837277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic reconstruction and characterization of the recombinant transacylase (E2b) component of bovine branched-chain alpha-keto acid dehydrogenase complex. Implication of histidine 391 as an active site residue.
    Griffin TA; Chuang DT
    J Biol Chem; 1990 Aug; 265(22):13174-80. PubMed ID: 2198287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli chaperonins cpn60 (groEL) and cpn10 (groES) do not catalyse the refolding of mitochondrial malate dehydrogenase.
    Miller AD; Maghlaoui K; Albanese G; Kleinjan DA; Smith C
    Biochem J; 1993 Apr; 291 ( Pt 1)(Pt 1):139-44. PubMed ID: 8097086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GroEL/GroES promote dissociation/reassociation cycles of a heterodimeric intermediate during alpha(2)beta(2) protein assembly. Iterative annealing at the quaternary structure level.
    Wynn RM; Song JL; Chuang DT
    J Biol Chem; 2000 Jan; 275(4):2786-94. PubMed ID: 10644743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and conservation of the inner E2 core domain structure of branched-chain alpha-keto acid dehydrogenase complex from bovine liver. Construction of a cDNA encoding the entire transacylase (E2b) precursor.
    Griffin TA; Lau KS; Chuang DT
    J Biol Chem; 1988 Oct; 263(28):14008-14. PubMed ID: 3049570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maple syrup urine disease: domain structure, mutations and exon skipping in the dihydrolipoyl transacylase (E2) component of the branched-chain alpha-keto acid dehydrogenase complex.
    Chuang DT; Fisher CW; Lau KS; Griffin TA; Wynn RM; Cox RP
    Mol Biol Med; 1991 Feb; 8(1):49-63. PubMed ID: 1943690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cDNA cloning of the chicken branched-chain alpha-keto acid dehydrogenase complex. Chicken-specific residues of the acyltransferase affect the overall activity and the interaction with the dehydrogenase.
    Ono K; Hakozaki M; Suzuki T; Mori T; Hata H; Kochi H
    Eur J Biochem; 2001 Feb; 268(3):727-36. PubMed ID: 11168412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GroEL, GroES, and ATP-dependent folding and spontaneous assembly of ornithine transcarbamylase.
    Zheng X; Rosenberg LE; Kalousek F; Fenton WA
    J Biol Chem; 1993 Apr; 268(10):7489-93. PubMed ID: 8096512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired assembly of E1 decarboxylase of the branched-chain alpha-ketoacid dehydrogenase complex in type IA maple syrup urine disease.
    Wynn RM; Davie JR; Chuang JL; Cote CD; Chuang DT
    J Biol Chem; 1998 May; 273(21):13110-8. PubMed ID: 9582350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of a stable folding intermediate which can be rescued by the chaperonins GroEL and GroES.
    Peralta D; Hartman DJ; Hoogenraad NJ; Høj PB
    FEBS Lett; 1994 Feb; 339(1-2):45-9. PubMed ID: 7906229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The formation of symmetrical GroEL-GroES complexes in the presence of ATP.
    Llorca O; Marco S; Carrascosa JL; Valpuesta JM
    FEBS Lett; 1994 May; 345(2-3):181-6. PubMed ID: 7911087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.