BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7913875)

  • 1. Paclitaxel inhibits progression of mitotic cells to G1 phase by interference with spindle formation without affecting other microtubule functions during anaphase and telephase.
    Long BH; Fairchild CR
    Cancer Res; 1994 Aug; 54(16):4355-61. PubMed ID: 7913875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low concentrations of paclitaxel induce cell type-dependent p53, p21 and G1/G2 arrest instead of mitotic arrest: molecular determinants of paclitaxel-induced cytotoxicity.
    Giannakakou P; Robey R; Fojo T; Blagosklonny MV
    Oncogene; 2001 Jun; 20(29):3806-13. PubMed ID: 11439344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Okadaic acid inhibits a protein phosphatase activity involved in formation of the mitotic spindle of GH4 rat pituitary cells.
    Van Dolah FM; Ramsdell JS
    J Cell Physiol; 1992 Jul; 152(1):190-8. PubMed ID: 1320037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death.
    Jordan MA; Wendell K; Gardiner S; Derry WB; Copp H; Wilson L
    Cancer Res; 1996 Feb; 56(4):816-25. PubMed ID: 8631019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of centromere dynamics by Taxol in living osteosarcoma cells.
    Kelling J; Sullivan K; Wilson L; Jordan MA
    Cancer Res; 2003 Jun; 63(11):2794-801. PubMed ID: 12782584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The spindle checkpoint in the dinoflagellate Crypthecodinium cohnii.
    Yeung PK; New DC; Leveson A; Yam CH; Poon RY; Wong JT
    Exp Cell Res; 2000 Jan; 254(1):120-9. PubMed ID: 10623472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacologic abrogation of the mitotic spindle checkpoint by an indolocarbazole discovered by cellular screening efficiently kills cancer cells.
    Stolz A; Vogel C; Schneider V; Ertych N; Kienitz A; Yu H; Bastians H
    Cancer Res; 2009 May; 69(9):3874-83. PubMed ID: 19366805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of microtubule assembly in tumor cells by 3-bromoacetylamino benzoylurea, a new cancericidal compound.
    Jiang JD; Wang Y; Roboz J; Strauchen J; Holland JF; Bekesi JG
    Cancer Res; 1998 May; 58(10):2126-33. PubMed ID: 9605756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents.
    Mooberry SL; Tien G; Hernandez AH; Plubrukarn A; Davidson BS
    Cancer Res; 1999 Feb; 59(3):653-60. PubMed ID: 9973214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevention of mammalian DNA reduplication, following the release from the mitotic spindle checkpoint, requires p53 protein, but not p53-mediated transcriptional activity.
    Notterman D; Young S; Wainger B; Levine AJ
    Oncogene; 1998 Nov; 17(21):2743-51. PubMed ID: 9840938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy.
    Vogel C; Kienitz A; Hofmann I; Müller R; Bastians H
    Oncogene; 2004 Sep; 23(41):6845-53. PubMed ID: 15286707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of intracellular topoisomerase II by antitumor bis(2,6-dioxopiperazine) derivatives: mode of cell growth inhibition distinct from that of cleavable complex-forming type inhibitors.
    Ishida R; Miki T; Narita T; Yui R; Sato M; Utsumi KR; Tanabe K; Andoh T
    Cancer Res; 1991 Sep; 51(18):4909-16. PubMed ID: 1654205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of organelles in the mitotic spindles of living cells: membrane and microtubule interactions.
    Waterman-Storer CM; Sanger JW; Sanger JM
    Cell Motil Cytoskeleton; 1993; 26(1):19-39. PubMed ID: 8106173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential mitotic responses to microtubule-stabilizing and -destabilizing drugs.
    Chen JG; Horwitz SB
    Cancer Res; 2002 Apr; 62(7):1935-8. PubMed ID: 11929805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of microtubule dynamics by epothilone B is associated with mitotic arrest.
    Kamath K; Jordan MA
    Cancer Res; 2003 Sep; 63(18):6026-31. PubMed ID: 14522931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of p53 in the response to mitotic spindle damage.
    Meek DW
    Pathol Biol (Paris); 2000 Apr; 48(3):246-54. PubMed ID: 10858957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intra-oocyte localization of MAD2 and its relationship with kinetochores, microtubules, and chromosomes in rat oocytes during meiosis.
    Zhang D; Ma W; Li YH; Hou Y; Li SW; Meng XQ; Sun XF; Sun QY; Wang WH
    Biol Reprod; 2004 Sep; 71(3):740-8. PubMed ID: 15115722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of G1-like arrest by low concentrations of paclitaxel: next cell cycle p53-dependent arrest with sub G1 DNA content mediated by prolonged mitosis.
    Demidenko ZN; Kalurupalle S; Hanko C; Lim CU; Broude E; Blagosklonny MV
    Oncogene; 2008 Jul; 27(32):4402-10. PubMed ID: 18469851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mitotic spindle requirement for DNA damage-induced apoptosis in Chinese hamster ovary cells.
    Johnson PA; Clements P; Hudson K; Caldecott KW
    Cancer Res; 1999 Jun; 59(11):2696-700. PubMed ID: 10363994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BRCA1 is required for meiotic spindle assembly and spindle assembly checkpoint activation in mouse oocytes.
    Xiong B; Li S; Ai JS; Yin S; Ouyang YC; Sun SC; Chen DY; Sun QY
    Biol Reprod; 2008 Oct; 79(4):718-26. PubMed ID: 18596218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.