These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 7913927)

  • 1. Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA.
    Grundy FJ; Turinsky AJ; Henkin TM
    J Bacteriol; 1994 Aug; 176(15):4527-33. PubMed ID: 7913927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of genes involved in utilization of acetate and acetoin in Bacillus subtilis.
    Grundy FJ; Waters DA; Takova TY; Henkin TM
    Mol Microbiol; 1993 Oct; 10(2):259-71. PubMed ID: 7934817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacillus subtilis ccpA gene mutants specifically defective in activation of acetoin biosynthesis.
    Turinsky AJ; Moir-Blais TR; Grundy FJ; Henkin TM
    J Bacteriol; 2000 Oct; 182(19):5611-4. PubMed ID: 10986270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis.
    Ali NO; Bignon J; Rapoport G; Debarbouille M
    J Bacteriol; 2001 Apr; 183(8):2497-504. PubMed ID: 11274109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contacts between Bacillus subtilis catabolite regulatory protein CcpA and amyO target site.
    Kim JH; Chambliss GH
    Nucleic Acids Res; 1997 Sep; 25(17):3490-6. PubMed ID: 9254709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors.
    Henkin TM; Grundy FJ; Nicholson WL; Chambliss GH
    Mol Microbiol; 1991 Mar; 5(3):575-84. PubMed ID: 1904524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the Bacillus subtilis acetate kinase gene by CcpA.
    Grundy FJ; Waters DA; Allen SH; Henkin TM
    J Bacteriol; 1993 Nov; 175(22):7348-55. PubMed ID: 8226682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional activation of the Bacillus subtilis ackA gene requires sequences upstream of the promoter.
    Turinsky AJ; Grundy FJ; Kim JH; Chambliss GH; Henkin TM
    J Bacteriol; 1998 Nov; 180(22):5961-7. PubMed ID: 9811655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of the Bacillus subtilis acsA gene: position and sequence context affect cre-mediated carbon catabolite repression.
    Zalieckas JM; Wray LV; Fisher SH
    J Bacteriol; 1998 Dec; 180(24):6649-54. PubMed ID: 9852010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis.
    Krüger S; Hecker M
    J Bacteriol; 1995 Oct; 177(19):5590-7. PubMed ID: 7559347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements.
    Miwa Y; Nagura K; Eguchi S; Fukuda H; Deutscher J; Fujita Y
    Mol Microbiol; 1997 Mar; 23(6):1203-13. PubMed ID: 9106211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An acetoin-regulated expression system of Bacillus subtilis.
    Silbersack J; Jürgen B; Hecker M; Schneidinger B; Schmuck R; Schweder T
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):895-903. PubMed ID: 16944132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site.
    Wray LV; Pettengill FK; Fisher SH
    J Bacteriol; 1994 Apr; 176(7):1894-902. PubMed ID: 8144455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the Bacillus subtilis phosphotransacetylase gene.
    Shin BS; Choi SK; Park SH
    J Biochem; 1999 Aug; 126(2):333-9. PubMed ID: 10423526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CcpA causes repression of the phoPR promoter through a novel transcription start site, P(A6).
    Puri-Taneja A; Paul S; Chen Y; Hulett FM
    J Bacteriol; 2006 Feb; 188(4):1266-78. PubMed ID: 16452408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catabolite repression mediated by the catabolite control protein CcpA in Staphylococcus xylosus.
    Egeter O; Brückner R
    Mol Microbiol; 1996 Aug; 21(4):739-49. PubMed ID: 8878037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catabolite regulation of the cytochrome c550-encoding Bacillus subtilis cccA gene.
    Monedero V; Boël G; Deutscher J
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):433-8. PubMed ID: 11361075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD.
    Puri-Taneja A; Schau M; Chen Y; Hulett FM
    J Bacteriol; 2007 May; 189(9):3348-58. PubMed ID: 17322317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis.
    Deutscher J; Reizer J; Fischer C; Galinier A; Saier MH; Steinmetz M
    J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Bacillus subtilis, the sirtuin protein deacetylase, encoded by the srtN gene (formerly yhdZ), and functions encoded by the acuABC genes control the activity of acetyl coenzyme A synthetase.
    Gardner JG; Escalante-Semerena JC
    J Bacteriol; 2009 Mar; 191(6):1749-55. PubMed ID: 19136592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.