BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 7914191)

  • 1. Identification of a chaperonin binding site in a chloroplast precursor protein.
    Dessauer CW; Bartlett SG
    J Biol Chem; 1994 Aug; 269(31):19766-76. PubMed ID: 7914191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric functional interaction between chaperonin and its plastidic cofactors.
    Guo P; Jiang S; Bai C; Zhang W; Zhao Q; Liu C
    FEBS J; 2015 Oct; 282(20):3959-70. PubMed ID: 26237751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A modified Escherichia coli chaperonin (groEL) polypeptide synthesized in tobacco and targeted to the chloroplasts.
    Wu HB; Feist GL; Hemmingsen SM
    Plant Mol Biol; 1993 Sep; 22(6):1087-100. PubMed ID: 8104528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and its precursor expressed in Escherichia coli are associated with groEL protein.
    Landry SJ; Bartlett SG
    J Biol Chem; 1989 May; 264(15):9090-3. PubMed ID: 2566610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfoleded state depends on two chaperonin proteins and Mg-ATP.
    Goloubinoff P; Christeller JT; Gatenby AA; Lorimer GH
    Nature; 1989 Dec 21-28; 342(6252):884-9. PubMed ID: 10532860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of isolated cpn10 domains and conserved amino acid residues in spinach chloroplast co-chaperonin by site-directed mutagenesis.
    Bertsch U; Soll J
    Plant Mol Biol; 1995 Dec; 29(5):1039-55. PubMed ID: 8555447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding.
    Todd MJ; Viitanen PV; Lorimer GH
    Science; 1994 Jul; 265(5172):659-66. PubMed ID: 7913555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The chaperonin GroEL binds a polypeptide in an alpha-helical conformation.
    Landry SJ; Gierasch LM
    Biochemistry; 1991 Jul; 30(30):7359-62. PubMed ID: 1677268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of nucleotide-binding regions in the chaperonin proteins GroEL and GroES.
    Martin J; Geromanos S; Tempst P; Hartl FU
    Nature; 1993 Nov; 366(6452):279-82. PubMed ID: 7901771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacteriophage T4 encodes a co-chaperonin that can substitute for Escherichia coli GroES in protein folding.
    van der Vies SM; Gatenby AA; Georgopoulos C
    Nature; 1994 Apr; 368(6472):654-6. PubMed ID: 7908418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quantitative assessment of the role of the chaperonin proteins in protein folding in vivo.
    Lorimer GH
    FASEB J; 1996 Jan; 10(1):5-9. PubMed ID: 8566548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mutation in GroEL interferes with protein folding by reducing the rate of discharge of sequestered polypeptides.
    Baneyx F; Gatenby AA
    J Biol Chem; 1992 Jun; 267(16):11637-44. PubMed ID: 1350786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mammalian mitochondrial chaperonin 60 functions as a single toroidal ring.
    Viitanen PV; Lorimer GH; Seetharam R; Gupta RS; Oppenheim J; Thomas JO; Cowan NJ
    J Biol Chem; 1992 Jan; 267(2):695-8. PubMed ID: 1346131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Several proteins imported into chloroplasts form stable complexes with the GroEL-related chloroplast molecular chaperone.
    Lubben TH; Donaldson GK; Viitanen PV; Gatenby AA
    Plant Cell; 1989 Dec; 1(12):1223-30. PubMed ID: 2577724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homologous plant and bacterial proteins chaperone oligomeric protein assembly.
    Hemmingsen SM; Woolford C; van der Vies SM; Tilly K; Dennis DT; Georgopoulos CP; Hendrix RW; Ellis RJ
    Nature; 1988 May; 333(6171):330-4. PubMed ID: 2897629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purified chaperonin 60 (groEL) interacts with the nonnative states of a multitude of Escherichia coli proteins.
    Viitanen PV; Gatenby AA; Lorimer GH
    Protein Sci; 1992 Mar; 1(3):363-9. PubMed ID: 1363913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms for GroEL/GroES-mediated folding of a large 86-kDa fusion polypeptide in vitro.
    Huang YS; Chuang DT
    J Biol Chem; 1999 Apr; 274(15):10405-12. PubMed ID: 10187830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insight into the cooperation of chloroplast chaperonin subunits.
    Zhang S; Zhou H; Yu F; Bai C; Zhao Q; He J; Liu C
    BMC Biol; 2016 Apr; 14():29. PubMed ID: 27072913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular chaperon produced by an intracellular symbiont.
    Kakeda K; Ishikawa H
    J Biochem; 1991 Oct; 110(4):583-7. PubMed ID: 1685735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chaperonin-facilitated refolding of ribulosebisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are K+ dependent.
    Viitanen PV; Lubben TH; Reed J; Goloubinoff P; O'Keefe DP; Lorimer GH
    Biochemistry; 1990 Jun; 29(24):5665-71. PubMed ID: 1974461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.