These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7914252)

  • 1. Capillary electrophoresis of single cells: observation of two compartments of neurotransmitter vesicles.
    Kristensen HK; Lau YY; Ewing AG
    J Neurosci Methods; 1994 Mar; 51(2):183-8. PubMed ID: 7914252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical profiles and monitoring dynamics at an individual nerve cell in Planorbis corneus with electrochemical detection.
    Anderson BB; Ewing AG
    J Pharm Biomed Anal; 1999 Feb; 19(1-2):15-32. PubMed ID: 10698565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine concentration in the cytoplasmic compartment of single neurons determined by capillary electrophoresis.
    Olefirowicz TM; Ewing AG
    J Neurosci Methods; 1990 Sep; 34(1-3):11-5. PubMed ID: 2259233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capillary electrophoresis in 2 and 5 microns diameter capillaries: application to cytoplasmic analysis.
    Olefirowicz TM; Ewing AG
    Anal Chem; 1990 Sep; 62(17):1872-6. PubMed ID: 2240573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demonstration of two distributions of vesicle radius in the dopamine neuron of Planorbis corneus from electrochemical data.
    Anderson BB; Chen G; Gutman DA; Ewing AG
    J Neurosci Methods; 1999 May; 88(2):153-61. PubMed ID: 10389661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of free dopamine in the cytoplasm of the giant dopamine cell of Planorbis corneus by voltammetry and capillary electrophoresis.
    Chien JB; Wallingford RA; Ewing AG
    J Neurochem; 1990 Feb; 54(2):633-8. PubMed ID: 2299357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple classes of catecholamine vesicles observed during exocytosis from the Planorbis cell body.
    Chen G; Ewing AG
    Brain Res; 1995 Dec; 701(1-2):167-74. PubMed ID: 8925280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological correlates of functionally defined synaptic vesicle populations.
    Schikorski T; Stevens CF
    Nat Neurosci; 2001 Apr; 4(4):391-5. PubMed ID: 11276229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopamine levels of two classes of vesicles are differentially depleted by amphetamine.
    Anderson BB; Chen G; Gutman DA; Ewing AG
    Brain Res; 1998 Mar; 788(1-2):294-301. PubMed ID: 9555063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spike activity and histofluorescence correlated in the giant dopamine neurone of Planorbis corneus.
    Lichtensteiger W; Felix D; Hefti F
    Brain Res; 1979 Jul; 170(2):231-45. PubMed ID: 466409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructure of a giant dopamine-containing neurone in Planorbis corneus.
    Pentreath VW; Cottrell GA
    Experientia; 1974 Mar; 30(3):293-4. PubMed ID: 4824610
    [No Abstract]   [Full Text] [Related]  

  • 12. The vesicular monoamine transporter 2 is present in small synaptic vesicles and preferentially localizes to large dense core vesicles in rat solitary tract nuclei.
    Nirenberg MJ; Liu Y; Peter D; Edwards RH; Pickel VM
    Proc Natl Acad Sci U S A; 1995 Sep; 92(19):8773-7. PubMed ID: 7568015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of vesicular dopamine and norepinephrine by monoamine oxidase inhibitors.
    Buu NT
    Biochem Pharmacol; 1989 May; 38(10):1685-92. PubMed ID: 2730683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compartmentation of catecholamines in rat brain: effects of agonists and antagonists.
    Hartman JA; Halaris AE
    Brain Res; 1980 Nov; 200(2):421-36. PubMed ID: 7417823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc-iodide-osmium procedures as markers of subcellular structures. I. Standardization of staining of transmitter containing vesicles.
    Rodríguez EM; Giménez AR
    Z Mikrosk Anat Forsch; 1981; 95(2):257-75. PubMed ID: 6169217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurotransmitter sampling and storage for capillary electrophoresis analysis.
    Zhang X; Fuller RR; Dahlgren RL; Potgieter K; Gillette R; Sweedler JV
    Fresenius J Anal Chem; 2001 Feb; 369(3-4):206-11. PubMed ID: 11293695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltammetric and pharmacological characterization of dopamine release from single exocytotic events at rat pheochromocytoma (PC12) cells.
    Kozminski KD; Gutman DA; Davila V; Sulzer D; Ewing AG
    Anal Chem; 1998 Aug; 70(15):3123-30. PubMed ID: 11013717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of microchemical techniques for the identification of new transmitter molecules in neurons.
    Giacobini E
    J Neurosci Res; 1975; 1(1):1-18. PubMed ID: 4628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Normal biogenesis and cycling of empty synaptic vesicles in dopamine neurons of vesicular monoamine transporter 2 knockout mice.
    Croft BG; Fortin GD; Corera AT; Edwards RH; Beaudet A; Trudeau LE; Fon EA
    Mol Biol Cell; 2005 Jan; 16(1):306-15. PubMed ID: 15496457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reserpine attenuates D-amphetamine and MDMA-induced transmitter release in vivo: a consideration of dose, core temperature and dopamine synthesis.
    Sabol KE; Seiden LS
    Brain Res; 1998 Sep; 806(1):69-78. PubMed ID: 9739110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.