These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
996 related articles for article (PubMed ID: 7914350)
21. Beta 2-adrenoceptor activation by zinterol causes protein phosphorylation, contractile effects and relaxant effects through a cAMP pathway in human atrium. Kaumann AJ; Sanders L; Lynham JA; Bartel S; Kuschel M; Karczewski P; Krause EG Mol Cell Biochem; 1996; 163-164():113-23. PubMed ID: 8974046 [TBL] [Abstract][Full Text] [Related]
22. Regulation of beta 1- and beta 3-adrenergic agonist-stimulated lipolytic response in hyperthyroid and hypothyroid rat white adipocytes. Germack R; Starzec A; Perret GY Br J Pharmacol; 2000 Feb; 129(3):448-56. PubMed ID: 10711342 [TBL] [Abstract][Full Text] [Related]
23. Adenylate cyclase activity in brown adipose tissue of the genetically obese (ob/ob) mouse. Bégin-Heick N; Heick HM Can J Biochem; 1982 Sep; 60(9):910-6. PubMed ID: 6129056 [TBL] [Abstract][Full Text] [Related]
24. Functional beta-adrenergic receptor signalling on nuclear membranes in adult rat and mouse ventricular cardiomyocytes. Boivin B; Lavoie C; Vaniotis G; Baragli A; Villeneuve LR; Ethier N; Trieu P; Allen BG; Hébert TE Cardiovasc Res; 2006 Jul; 71(1):69-78. PubMed ID: 16631628 [TBL] [Abstract][Full Text] [Related]
25. Atypical beta-adrenergic receptor in 3T3-F442A adipocytes. Pharmacological and molecular relationship with the human beta 3-adrenergic receptor. Fève B; Emorine LJ; Lasnier F; Blin N; Baude B; Nahmias C; Strosberg AD; Pairault J J Biol Chem; 1991 Oct; 266(30):20329-36. PubMed ID: 1682311 [TBL] [Abstract][Full Text] [Related]
26. Differential relevance of beta-adrenoceptor subtypes in modulating the rat brown adipocytes function. Nisoli E; Tonello C; Carruba MO Arch Int Pharmacodyn Ther; 1995; 329(3):436-53. PubMed ID: 8546541 [TBL] [Abstract][Full Text] [Related]
27. Expression of beta 1- and beta 3-adrenergic-receptor messages and adenylate cyclase beta-adrenergic response in bovine perirenal adipose tissue during its transformation from brown into white fat. Casteilla L; Muzzin P; Revelli JP; Ricquier D; Giacobino JP Biochem J; 1994 Jan; 297 ( Pt 1)(Pt 1):93-7. PubMed ID: 7904157 [TBL] [Abstract][Full Text] [Related]
28. Beta 1-adrenergic regulation of the GT1 gonadotropin-releasing hormone (GnRH) neuronal cell lines: stimulation of GnRH release via receptors positively coupled to adenylate cyclase. Martínez de la Escalera G; Choi AL; Weiner RI Endocrinology; 1992 Sep; 131(3):1397-402. PubMed ID: 1354602 [TBL] [Abstract][Full Text] [Related]
29. Central leptin regulates the UCP1 and ob genes in brown and white adipose tissue via different beta-adrenoceptor subtypes. Commins SP; Watson PM; Levin N; Beiler RJ; Gettys TW J Biol Chem; 2000 Oct; 275(42):33059-67. PubMed ID: 10938091 [TBL] [Abstract][Full Text] [Related]
30. Differential adrenergic regulation of the gene expression of the beta-adrenoceptor subtypes beta1, beta2 and beta3 in brown adipocytes. Bengtsson T; Cannon B; Nedergaard J Biochem J; 2000 May; 347 Pt 3(Pt 3):643-51. PubMed ID: 10769166 [TBL] [Abstract][Full Text] [Related]
31. Role of β-adrenergic receptors in the anti-obesity and anti-diabetic effects of zinc-α2-glycoprotien (ZAG). Russell ST; Tisdale MJ Biochim Biophys Acta; 2012 Apr; 1821(4):590-9. PubMed ID: 22227600 [TBL] [Abstract][Full Text] [Related]
32. Role of β-adrenergic receptors in regulation of hepatic fat accumulation during aging. Ghosh PM; Shu ZJ; Zhu B; Lu Z; Ikeno Y; Barnes JL; Yeh CK; Zhang BX; Katz MS; Kamat A J Endocrinol; 2012 Jun; 213(3):251-61. PubMed ID: 22457517 [TBL] [Abstract][Full Text] [Related]
33. Adenylate cyclase agonist properties of CGP-12177A in brown fat: evidence for atypical beta-adrenergic receptors. Scarpace PJ; Matheny M Am J Physiol; 1991 Feb; 260(2 Pt 1):E226-31. PubMed ID: 1671733 [TBL] [Abstract][Full Text] [Related]
34. Indirect evidence against a contribution of the guanine nucleotide-binding inhibitory component of adenylate cyclase to impaired lipolysis in the epididymal adipose tissue of congenitally obese (ob/ob) mice. Dehaye JP; Hebbelinck M; Winand J; Christophe J Horm Metab Res; 1985 Jul; 17(7):333-6. PubMed ID: 2993142 [TBL] [Abstract][Full Text] [Related]
35. Rapid inhibition of ob gene expression and circulating leptin levels in lean mice by the beta 3-adrenoceptor agonists BRL 35135A and ZD2079. Trayhurn P; Duncan JS; Rayner DV; Hardie LJ Biochem Biophys Res Commun; 1996 Nov; 228(2):605-10. PubMed ID: 8920957 [TBL] [Abstract][Full Text] [Related]
36. Interaction of amiodarone and triiodothyronine on the expression of beta-adrenoceptors in brown adipose tissue of rat. Adli H; Bazin R; Perret GY Br J Pharmacol; 1999 Mar; 126(6):1455-61. PubMed ID: 10217540 [TBL] [Abstract][Full Text] [Related]
37. Beta 3-adrenergic activation of adenylyl cyclase in mouse white adipocytes: modulation by GTP and effect of obesity. Bégin-Heick N J Cell Biochem; 1995 Aug; 58(4):464-73. PubMed ID: 7593268 [TBL] [Abstract][Full Text] [Related]
38. Structural basis for receptor subtype-specific regulation revealed by a chimeric beta 3/beta 2-adrenergic receptor. Liggett SB; Freedman NJ; Schwinn DA; Lefkowitz RJ Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3665-9. PubMed ID: 8386380 [TBL] [Abstract][Full Text] [Related]
39. Coexistence of beta 1-, beta 2-, and beta 3-adrenoceptors in dog fat cells and their differential activation by catecholamines. Galitzky J; Reverte M; Portillo M; Carpéné C; Lafontan M; Berlan M Am J Physiol; 1993 Mar; 264(3 Pt 1):E403-12. PubMed ID: 8096365 [TBL] [Abstract][Full Text] [Related]
40. Differential regulation of beta 1- and beta 2-adrenergic receptor protein and mRNA levels by glucocorticoids during 3T3-F442A adipose differentiation. Fève B; Emorine LJ; Briend-Sutren MM; Lasnier F; Strosberg AD; Pairault J J Biol Chem; 1990 Sep; 265(27):16343-9. PubMed ID: 1975811 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]