These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 7915082)

  • 1. cAMP can raise or lower cardiac actomyosin ATPase activity depending on alpha-adrenergic activity.
    McClellan G; Weisberg A; Winegrad S
    Am J Physiol; 1994 Aug; 267(2 Pt 2):H431-42. PubMed ID: 7915082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelial cells are required for the cAMP regulation of cardiac contractile proteins.
    McClellan G; Weisberg A; Lin LE; Rose D; Ramaciotti C; Winegrad S
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2885-9. PubMed ID: 8385348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Key role of myosin light chain (MLC) kinase-mediated MLC2a phosphorylation in the alpha 1-adrenergic positive inotropic effect in human atrium.
    Grimm M; Haas P; Willipinski-Stapelfeldt B; Zimmermann WH; Rau T; Pantel K; Weyand M; Eschenhagen T
    Cardiovasc Res; 2005 Jan; 65(1):211-20. PubMed ID: 15621049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of cardiac contractile proteins by phosphorylation.
    Winegrad S; McClellan G; Horowits R; Tucker M; Lin LE; Weisberg A
    Fed Proc; 1983 Jan; 42(1):39-44. PubMed ID: 6293881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of cardiac contractile proteins. Correlations between physiology and biochemistry.
    Winegrad S
    Circ Res; 1984 Nov; 55(5):565-74. PubMed ID: 6091939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta-adrenergic regulation of cardiac myosin.
    Winegrad S; McClellan G; Weisberg A; Lin LE; Weindling S; Horowits R
    Can J Physiol Pharmacol; 1987 Apr; 65(4):606-9. PubMed ID: 3038286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alpha-adrenergic receptors on rat ventricular myocytes: characteristics and linkage to cAMP metabolism.
    Buxton IL; Brunton LL
    Am J Physiol; 1986 Aug; 251(2 Pt 2):H307-13. PubMed ID: 3017129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenosine 3':5'-monophosphate-mediated inhibition of myosin light chain phosphorylation in bovine aortic actomyosin.
    Silver PJ; DiSalvo J
    J Biol Chem; 1979 Oct; 254(20):9951-4. PubMed ID: 226548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor necrosis factor-alpha decreases the phosphorylation levels of phospholamban and troponin I in spontaneously beating rat neonatal cardiac myocytes.
    Yokoyama T; Arai M; Sekiguchi K; Tanaka T; Kanda T; Suzuki T; Nagai R
    J Mol Cell Cardiol; 1999 Jan; 31(1):261-73. PubMed ID: 10072733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential sensitivity to isoprenaline of troponin I and phospholamban phosphorylation in isolated rat hearts.
    Karczewski P; Bartel S; Krause EG
    Biochem J; 1990 Feb; 266(1):115-22. PubMed ID: 2155603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and regulation of mutant forms of cardiac TnI in a reconstituted actomyosin system: role of kinase dependent phosphorylation.
    Malhotra A; Nakouzi A; Bowman J; Buttrick P
    Mol Cell Biochem; 1997 May; 170(1-2):99-107. PubMed ID: 9144323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Troponin I phosphorylation enhances crossbridge kinetics during beta-adrenergic stimulation in rat cardiac tissue.
    Turnbull L; Hoh JF; Ludowyke RI; Rossmanith GH
    J Physiol; 2002 Aug; 542(Pt 3):911-20. PubMed ID: 12154188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homologous desensitization of rat heart cells to beta-adrenergic stimulation and the absence of alpha-adrenergic or prostaglandin E1 effects.
    Fisher RA; Harary I; Thomas JA
    J Cyclic Nucleotide Protein Phosphor Res; 1983-1984; 9(6):449-60. PubMed ID: 6151955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein kinase C and A sites on troponin I regulate myofilament Ca2+ sensitivity and ATPase activity in the mouse myocardium.
    Pi Y; Zhang D; Kemnitz KR; Wang H; Walker JW
    J Physiol; 2003 Nov; 552(Pt 3):845-57. PubMed ID: 12923217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of vascular and cardiac contractile protein regulatory mechanisms by calmodulin inhibitors and related compounds.
    Silver PJ; Pinto PB; Dachiw J
    Biochem Pharmacol; 1986 Aug; 35(15):2545-51. PubMed ID: 2943284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of epinephrine with isolated rabbit tracheal epithelial cells.
    Liedtke CM
    Am J Physiol; 1986 Aug; 251(2 Pt 1):C209-15. PubMed ID: 2874740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the mechanism of beta-adrenergic regulation of the Ca channel in the guinea-pig heart.
    Kameyama M; Hofmann F; Trautwein W
    Pflugers Arch; 1985 Oct; 405(3):285-93. PubMed ID: 2415919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alpha 1-adrenergic receptor stimulation decreases maximum shortening velocity of skinned single ventricular myocytes from rats.
    Strang KT; Moss RL
    Circ Res; 1995 Jul; 77(1):114-20. PubMed ID: 7788869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beta-adrenoceptor-mediated inhibition of alpha 1-adrenoceptor-mediated and field stimulation-induced contractile responses in the prostate of the guinea pig.
    Haynes JM; Hill SJ
    Br J Pharmacol; 1997 Nov; 122(6):1067-74. PubMed ID: 9401771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the calcium antagonists perhexiline and cinnarizine on vascular and cardiac contractile protein function.
    Silver PJ; Dachiw J; Ambrose JM; Pinto PB
    J Pharmacol Exp Ther; 1985 Sep; 234(3):629-35. PubMed ID: 3162016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.