These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 7915325)

  • 1. Homology modeling of the dopamine D2 receptor and its testing by docking of agonists and tricyclic antagonists.
    Teeter MM; Froimowitz M; Stec B; DuRand CJ
    J Med Chem; 1994 Sep; 37(18):2874-88. PubMed ID: 7915325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular modeling of the dopamine D2 and serotonin 5-HT1A receptor binding modes of the enantiomers of 5-OMe-BPAT.
    Homan EJ; Wikström HV; Grol CJ
    Bioorg Med Chem; 1999 Sep; 7(9):1805-20. PubMed ID: 10530928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Universal 3D QSAR Model for Dopamine D
    Zięba A; Żuk J; Bartuzi D; Matosiuk D; Poso A; Kaczor AA
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31540025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-directed mutagenesis of the human dopamine D2 receptor.
    Mansour A; Meng F; Meador-Woodruff JH; Taylor LP; Civelli O; Akil H
    Eur J Pharmacol; 1992 Oct; 227(2):205-14. PubMed ID: 1358663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopamine D2 receptor model explains binding affinity of neuroleptics: piquindone and its structure activity relationships.
    Teeter MM; Durand CJ
    Drug Des Discov; 1996 Apr; 13(3-4):49-62. PubMed ID: 8874043
    [No Abstract]   [Full Text] [Related]  

  • 6. Modeling and mutational analysis of a putative sodium-binding pocket on the dopamine D2 receptor.
    Neve KA; Cumbay MG; Thompson KR; Yang R; Buck DC; Watts VJ; DuRand CJ; Teeter MM
    Mol Pharmacol; 2001 Aug; 60(2):373-81. PubMed ID: 11455025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of 7TM receptor-ligand complex models using ligand-biased, semi-empirical helix-bundle repacking in torsion space: application to the agonist interaction of the human dopamine D2 receptor.
    Malo M; Persson R; Svensson P; Luthman K; Brive L
    J Comput Aided Mol Des; 2013 Mar; 27(3):277-91. PubMed ID: 23553533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-based virtual screening of chemical databases. II. Are homology models of G-Protein Coupled Receptors suitable targets?
    Bissantz C; Bernard P; Hibert M; Rognan D
    Proteins; 2003 Jan; 50(1):5-25. PubMed ID: 12471595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The action of a negative allosteric modulator at the dopamine D
    Draper-Joyce CJ; Verma RK; Michino M; Shonberg J; Kopinathan A; Klein Herenbrink C; Scammells PJ; Capuano B; Abramyan AM; Thal DM; Javitch JA; Christopoulos A; Shi L; Lane JR
    Sci Rep; 2018 Jan; 8(1):1208. PubMed ID: 29352161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular modelling of D2-like dopamine receptors.
    Livingstone CD; Strange PG; Naylor LH
    Biochem J; 1992 Oct; 287 ( Pt 1)(Pt 1):277-82. PubMed ID: 1358063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homology models of mu-opioid receptor with organic and inorganic cations at conserved aspartates in the second and third transmembrane domains.
    Zhorov BS; Ananthanarayanan VS
    Arch Biochem Biophys; 2000 Mar; 375(1):31-49. PubMed ID: 10683246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dopamine D2 receptor dimer and its interaction with homobivalent antagonists: homology modeling, docking and molecular dynamics.
    Kaczor AA; Jörg M; Capuano B
    J Mol Model; 2016 Sep; 22(9):203. PubMed ID: 27491852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of G-protein-coupled receptors: application to dopamine, adrenaline, serotonin, acetylcholine, and mammalian opsin receptors.
    Trumpp-Kallmeyer S; Hoflack J; Bruinvels A; Hibert M
    J Med Chem; 1992 Sep; 35(19):3448-62. PubMed ID: 1328638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and protein engineering studies of active and inactive states of human dopamine D2 receptor (D2R) and investigation of drug/receptor interactions.
    Salmas RE; Yurtsever M; Stein M; Durdagi S
    Mol Divers; 2015 May; 19(2):321-32. PubMed ID: 25652238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Models of G-protein coupled receptors revised for family-wide compliance with experimental data. A new sequence accommodation suggested for helix G.
    Röper D; Krüger P; Grötzinger J; Wollmer A; Strassburger W
    Recept Channels; 1995; 3(2):97-106. PubMed ID: 8581405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CoMFA-based prediction of agonist affinities at recombinant D1 vs D2 dopamine receptors.
    Wilcox RE; Tseng T; Brusniak MY; Ginsburg B; Pearlman RS; Teeter M; DuRand C; Starr S; Neve KA
    J Med Chem; 1998 Oct; 41(22):4385-99. PubMed ID: 9784114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homology model of the CB1 cannabinoid receptor: sites critical for nonclassical cannabinoid agonist interaction.
    Shim JY; Welsh WJ; Howlett AC
    Biopolymers; 2003; 71(2):169-89. PubMed ID: 12767117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular modeling and docking study on dopamine D2-like and serotonin 5-HT2A receptors.
    Duan X; Zhang M; Zhang X; Wang F; Lei M
    J Mol Graph Model; 2015 Apr; 57():143-55. PubMed ID: 25728902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cysteine residue in the third membrane-spanning segment of the human D2 dopamine receptor is exposed in the binding-site crevice.
    Javitch JA; Li X; Kaback J; Karlin A
    Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10355-9. PubMed ID: 7937955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramolecular allosteric communication in dopamine D2 receptor revealed by evolutionary amino acid covariation.
    Sung YM; Wilkins AD; Rodriguez GJ; Wensel TG; Lichtarge O
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3539-44. PubMed ID: 26979958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.