BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 7915608)

  • 1. Enhancement of noradrenergic constriction of large coronary arteries by inhibition of nitric oxide synthesis in anaesthetized dogs.
    Woodman OL; Pannangpetch P
    Br J Pharmacol; 1994 Jun; 112(2):443-8. PubMed ID: 7915608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelium-dependent relaxation competes with alpha 1- and alpha 2-adrenergic constriction in the canine epicardial coronary microcirculation.
    Jones CJ; DeFily DV; Patterson JL; Chilian WM
    Circulation; 1993 Apr; 87(4):1264-74. PubMed ID: 8384938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-nitro L-arginine causes coronary vasoconstriction and inhibits endothelium-dependent vasodilatation in anaesthetized greyhounds.
    Woodman OL; Dusting GJ
    Br J Pharmacol; 1991 Jun; 103(2):1407-10. PubMed ID: 1909199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of alpha 1- and alpha 2-adrenoceptors in the coronary vasoconstrictor responses to neuronally released and exogenous noradrenaline in the dog.
    Woodman OL
    Naunyn Schmiedebergs Arch Pharmacol; 1987 Aug; 336(2):161-8. PubMed ID: 2891038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuation of vasoconstriction by endogenous nitric oxide in rat caudal artery.
    Vo PA; Reid JJ; Rand MJ
    Br J Pharmacol; 1992 Dec; 107(4):1121-8. PubMed ID: 1467834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NG-nitro-L-arginine antagonizes endothelium-dependent dilator responses by inhibiting endothelium-derived relaxing factor release in the isolated rabbit heart.
    Lamontagne D; Pohl U; Busse R
    Pflugers Arch; 1991 Apr; 418(3):266-70. PubMed ID: 1649992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelial function and adrenergic reactivity in human type-II diabetic resistance arteries.
    Cipolla MJ; Harker CT; Porter JM
    J Vasc Surg; 1996 May; 23(5):940-9. PubMed ID: 8667520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of cross-linked hemoglobin on regional vascular conductance in dogs.
    Dietz NM; Martin CM; Beltran-del-Rio AG; Joyner MJ
    Anesth Analg; 1997 Aug; 85(2):265-73. PubMed ID: 9249098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of nitric oxide in coronary vascular responses to 5-hydroxytryptamine in the anaesthetized greyhound.
    Woodman OL; Dusting GJ
    Clin Exp Pharmacol Physiol; 1994 May; 21(5):377-81. PubMed ID: 7525131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional relation between nitric oxide and noradrenaline for the modulation of vascular tone in rat mesenteric vasculature.
    Yamamoto R; Wada A; Asada Y; Yuhi T; Yanagita T; Niina H; Sumiyoshi A
    Naunyn Schmiedebergs Arch Pharmacol; 1994 Apr; 349(4):362-6. PubMed ID: 8058108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral blood flow and cerebrovascular reactivity after inhibition of nitric oxide synthesis in conscious goats.
    Fernández N; García JL; García-Villalón AL; Monge L; Gómez B; Diéguez G
    Br J Pharmacol; 1993 Sep; 110(1):428-34. PubMed ID: 8220904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of nitric oxide to coronary vasodilation during hypercapnic acidosis.
    Gurevicius J; Salem MR; Metwally AA; Silver JM; Crystal GJ
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H39-47. PubMed ID: 7530920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of the carotid sinus reflex on large coronary artery diameter in anaesthetized dogs.
    Woodman OL
    Clin Exp Pharmacol Physiol; 1987; 14(11-12):867-75. PubMed ID: 2896081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of endothelium-derived nitric oxide in acetylcholine-induced coronary vasoconstriction in closed-chest pigs.
    Hata H; Egashira K; Fukai T; Ohara Y; Kasuya H; Takahashi T; Takeshita A
    Coron Artery Dis; 1993 Oct; 4(10):891-8. PubMed ID: 8269195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of EDRF/NO in parasympathetic coronary vasodilation following carotid chemoreflex activation in conscious dogs.
    Shen W; Ochoa M; Xu X; Wang J; Hintze TH
    Am J Physiol; 1994 Aug; 267(2 Pt 2):H605-13. PubMed ID: 7915084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiovascular actions of inhibitors of endothelium-derived relaxing factor (nitric oxide) formation/release in anesthetized dogs.
    Klabunde RE; Ritger RC; Helgren MC
    Eur J Pharmacol; 1991 Jun; 199(1):51-9. PubMed ID: 1893927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of the inhibitory effects of sodium nitroprusside, pinacidil and nifedipine on pressor response to NG-nitro-L-arginine.
    Wang YX; Zhou T; Pang CC
    Br J Pharmacol; 1993 Feb; 108(2):398-404. PubMed ID: 8448590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of nitric oxide synthase specifically enhances adrenergic vasoconstriction in rabbits.
    Du ZY; Dusting GJ; Woodman OL
    Clin Exp Pharmacol Physiol; 1992 Jul; 19(7):523-30. PubMed ID: 1379894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of ability of levcromakalim and sodium nitroprusside to reverse the cardiovascular effects of nitric oxide synthase inhibition in the anaesthetised pig.
    Herity NA; Allen JD; Silke B; Adgey AA
    Cardiovasc Res; 1994 Jun; 28(6):894-900. PubMed ID: 7522965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nitric oxide synthesis inhibition on the goat coronary circulation under basal conditions and after vasodilator stimulation.
    García JL; Fernández N; García-Villalón AL; Monge L; Gómez B; Diéguez G
    Br J Pharmacol; 1992 Jul; 106(3):563-7. PubMed ID: 1504740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.