BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 7916336)

  • 1. Na(+)-dependent glutamate transporter in human retinal pigment epithelial cells.
    Miyamoto Y; Del Monte MA
    Invest Ophthalmol Vis Sci; 1994 Sep; 35(10):3589-98. PubMed ID: 7916336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional activity of a monocarboxylate transporter, MCT1, in the human retinal pigmented epithelium cell line, ARPE-19.
    Majumdar S; Gunda S; Pal D; Mitra AK
    Mol Pharm; 2005; 2(2):109-17. PubMed ID: 15804185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of glutamate transporter subtypes in cultured retinal pigment epithelial and retinoblastoma cells.
    Mäenpää H; Gegelashvili G; Tähti H
    Curr Eye Res; 2004 Mar; 28(3):159-65. PubMed ID: 14977517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure, function, and regulation of human cystine/glutamate transporter in retinal pigment epithelial cells.
    Bridges CC; Kekuda R; Wang H; Prasad PD; Mehta P; Huang W; Smith SB; Ganapathy V
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):47-54. PubMed ID: 11133847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Na+-dependent glutamate transport activity in synaptosomes, C6 glioma, and Xenopus oocytes expressing excitatory amino acid carrier 1 (EAAC1).
    Dowd LA; Coyle AJ; Rothstein JD; Pritchett DB; Robinson MB
    Mol Pharmacol; 1996 Mar; 49(3):465-73. PubMed ID: 8643086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and functional characterization of a Na(+)-independent large neutral amino acid transporter (LAT2) on ARPE-19 cells.
    Gandhi MD; Pal D; Mitra AK
    Int J Pharm; 2004 May; 275(1-2):189-200. PubMed ID: 15081149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular acidification of the leech giant glial cell evoked by glutamate and aspartate.
    Deitmer JW; Schneider HP
    Glia; 1997 Feb; 19(2):111-22. PubMed ID: 9034828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding and transport of [3H](2S,4R)- 4-methylglutamate, a new ligand for glutamate transporters, demonstrate labeling of EAAT1 in cultured murine astrocytes.
    Apricò K; Beart PM; Crawford D; O'Shea RD
    J Neurosci Res; 2004 Mar; 75(6):751-9. PubMed ID: 14994336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a novel cationic drug transporter in human retinal pigment epithelial cells.
    Han YH; Sweet DH; Hu DN; Pritchard JB
    J Pharmacol Exp Ther; 2001 Feb; 296(2):450-7. PubMed ID: 11160630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamate transport by retinal Muller cells in glutamate/aspartate transporter-knockout mice.
    Sarthy VP; Pignataro L; Pannicke T; Weick M; Reichenbach A; Harada T; Tanaka K; Marc R
    Glia; 2005 Jan; 49(2):184-96. PubMed ID: 15390100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific interaction of glutamate with membranes from cultured retinal pigment epithelium.
    López-Colomé AM; Salceda R; Fragoso G
    J Neurosci Res; 1993 Mar; 34(4):454-61. PubMed ID: 8097266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of glutamate uptake systems in astrocyte primary cultures from rat brain.
    Flott B; Seifert W
    Glia; 1991; 4(3):293-304. PubMed ID: 1716608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bidirectional glutathione transport by cultured human retinal pigment epithelial cells.
    Lu SC; Sun WM; Nagineni CN; Hooks JJ; Kannan R
    Invest Ophthalmol Vis Sci; 1995 Nov; 36(12):2523-30. PubMed ID: 7591642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron regulates L-cystine uptake and glutathione levels in lens epithelial and retinal pigment epithelial cells by its effect on cytosolic aconitase.
    Lall MM; Ferrell J; Nagar S; Fleisher LN; McGahan MC
    Invest Ophthalmol Vis Sci; 2008 Jan; 49(1):310-9. PubMed ID: 18172108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of L-[14C]cystine and L-[14C]cysteine by subtypes of high affinity glutamate transporters over-expressed in HEK cells.
    Hayes D; Wiessner M; Rauen T; McBean GJ
    Neurochem Int; 2005 Jun; 46(8):585-94. PubMed ID: 15863236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of glutamate transport substrates and glutamate receptor ligands on the activity of Na-/K(+)-ATPase in brain tissue in vitro.
    Nanitsos EK; Acosta GB; Saihara Y; Stanton D; Liao LP; Shin JW; Rae C; Balcar VJ
    Clin Exp Pharmacol Physiol; 2004 Nov; 31(11):762-9. PubMed ID: 15566390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of a Na+-dependent neutral amino acid transporter, ASCT1, in rabbit corneal epithelial cell culture and rabbit cornea.
    Katragadda S; Talluri RS; Pal D; Mitra AK
    Curr Eye Res; 2005 Nov; 30(11):989-1002. PubMed ID: 16282133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutathione transport in human retinal pigment epithelial (HRPE) cells: apical localization of sodium-dependent gsh transport.
    Kannan R; Tang D; Hu J; Bok D
    Exp Eye Res; 2001 Jun; 72(6):661-6. PubMed ID: 11384154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ascorbate uptake by ROS 17/2.8 osteoblast-like cells: substrate specificity and sensitivity to transport inhibitors.
    Dixon SJ; Kulaga A; Jaworski EM; Wilson JX
    J Bone Miner Res; 1991 Jun; 6(6):623-9. PubMed ID: 1887825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the tritium-labeled analog of L-threo-beta-benzyloxyaspartate binding to glutamate transporters.
    Shimamoto K; Otsubo Y; Shigeri Y; Yasuda-Kamatani Y; Satoh M; Kaneko S; Nakagawa T
    Mol Pharmacol; 2007 Jan; 71(1):294-302. PubMed ID: 17047096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.