BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 7916691)

  • 1. TKL2, a second transketolase gene of Saccharomyces cerevisiae. Cloning, sequence and deletion analysis of the gene.
    Schaaff-Gerstenschläger I; Mannhaupt G; Vetter I; Zimmermann FK; Feldmann H
    Eur J Biochem; 1993 Oct; 217(1):487-92. PubMed ID: 7916691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pentose-phosphate pathway in Saccharomyces cerevisiae: analysis of deletion mutants for transketolase, transaldolase, and glucose 6-phosphate dehydrogenase.
    Schaaff-Gerstenschläger I; Zimmermann FK
    Curr Genet; 1993 Nov; 24(5):373-6. PubMed ID: 8299150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae.
    Matsushika A; Goshima T; Fujii T; Inoue H; Sawayama S; Yano S
    Enzyme Microb Technol; 2012 Jun; 51(1):16-25. PubMed ID: 22579386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of a transketolase gene from Kluyveromyces lactis reveals that the yeast enzymes are more related to transketolases of prokaryotic origins than to those of higher eukaryotes.
    Jacoby JJ; Heinisch JJ
    Curr Genet; 1997 Jan; 31(1):15-21. PubMed ID: 9000376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast TKL1 gene encodes a transketolase that is required for efficient glycolysis and biosynthesis of aromatic amino acids.
    Sundström M; Lindqvist Y; Schneider G; Hellman U; Ronne H
    J Biol Chem; 1993 Nov; 268(32):24346-52. PubMed ID: 8226984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning of the transketolase gene from erythritol-producing yeast Candida magnoliae.
    Yoo BH; Park EH; Seo JH; Kim MD
    J Microbiol Biotechnol; 2014 Oct; 24(10):1389-96. PubMed ID: 25394484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of the Pichia stipitis transketolase gene and expression in a xylose-utilising Saccharomyces cerevisiae transformant.
    Metzger MH; Hollenberg CP
    Appl Microbiol Biotechnol; 1994 Nov; 42(2-3):319-25. PubMed ID: 7765773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and characterization of a Saccharomyces cerevisiae gene encoding the low molecular weight protein-tyrosine phosphatase.
    Ostanin K; Pokalsky C; Wang S; Van Etten RL
    J Biol Chem; 1995 Aug; 270(31):18491-9. PubMed ID: 7629177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning of the transketolase gene and the effect of its dosage on aromatic amino acid production in Corynebacterium glutamicum.
    Ikeda M; Okamoto K; Katsumata R
    Appl Microbiol Biotechnol; 1999 Feb; 51(2):201-6. PubMed ID: 10091326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA sequence of the yeast transketolase gene.
    Fletcher TS; Kwee IL; Nakada T; Largman C; Martin BM
    Biochemistry; 1992 Feb; 31(6):1892-6. PubMed ID: 1737042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of the tktB gene encoding a second transketolase in Escherichia coli K-12.
    Iida A; Teshiba S; Mizobuchi K
    J Bacteriol; 1993 Sep; 175(17):5375-83. PubMed ID: 8396116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the essential yeast gene encoding N-acetylglucosamine-phosphate mutase.
    Hofmann M; Boles E; Zimmermann FK
    Eur J Biochem; 1994 Apr; 221(2):741-7. PubMed ID: 8174553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of coenzyme modification on the structural and catalytic properties of wild-type transketolase and of the variant E418A from Saccharomyces cerevisiae.
    Golbik R; Meshalkina LE; Sandalova T; Tittmann K; Fiedler E; Neef H; König S; Kluger R; Kochetov GA; Schneider G; Hübner G
    FEBS J; 2005 Mar; 272(6):1326-42. PubMed ID: 15752351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide sequence of the Escherichia coli K-12 transketolase (tkt) gene.
    Sprenger GA
    Biochim Biophys Acta; 1993 Nov; 1216(2):307-10. PubMed ID: 8241274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, expression and characterization of sugarcane (Saccharum officinarum L.) transketolase.
    Kalhori N; Nulit R; Go R
    Protein J; 2013 Oct; 32(7):551-9. PubMed ID: 24132392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular analysis of the Corynebacterium glutamicum transketolase gene.
    Ikeda M; Kamada N; Takano Y; Nakano T
    Biosci Biotechnol Biochem; 1999 Oct; 63(10):1806-10. PubMed ID: 10586507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning of the STE5 gene of Saccharomyces cerevisiae as a suppressor of the mating defect of cdc25 temperature-sensitive mutants.
    Perlman R; Yablonski D; Simchen G; Levitzki A
    Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5474-8. PubMed ID: 8516289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant.
    Boles E; Lehnert W; Zimmermann FK
    Eur J Biochem; 1993 Oct; 217(1):469-77. PubMed ID: 7901008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino-terminal protein processing in Saccharomyces cerevisiae is an essential function that requires two distinct methionine aminopeptidases.
    Li X; Chang YH
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12357-61. PubMed ID: 8618900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A family of hexosephosphate mutases in Saccharomyces cerevisiae.
    Boles E; Liebetrau W; Hofmann M; Zimmermann FK
    Eur J Biochem; 1994 Feb; 220(1):83-96. PubMed ID: 8119301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.