These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 7916965)

  • 1. Emerging awareness of the critical roles of S-phosphocysteine and selenophosphate in biological systems.
    Stadtman TC
    Biofactors; 1994 May; 4(3-4):181-5. PubMed ID: 7916965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A purified selenophosphate-dependent enzyme from Salmonella typhimurium catalyzes the replacement of sulfur in 2-thiouridine residues in tRNAs with selenium.
    Veres Z; Stadtman TC
    Proc Natl Acad Sci U S A; 1994 Aug; 91(17):8092-6. PubMed ID: 7520175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic insights revealed through characterization of a novel chromophore in selenophosphate synthetase from Escherichia coli.
    Wolfe MD
    IUBMB Life; 2003 Dec; 55(12):689-93. PubMed ID: 14769005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of catalytic intermediates of human selenophosphate synthetase 1.
    Wang KT; Wang J; Li LF; Su XD
    J Mol Biol; 2009 Jul; 390(4):747-59. PubMed ID: 19477186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escherichia coli mutant SELD enzymes. The cysteine 17 residue is essential for selenophosphate formation from ATP and selenide.
    Kim IY; Veres Z; Stadtman TC
    J Biol Chem; 1992 Sep; 267(27):19650-4. PubMed ID: 1527085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selenophosphate synthetase: enzyme labeling studies with [gamma-32P]ATP, [beta-32P]ATP, [8-14C]ATP, and [75Se]selenide.
    Liu SY; Stadtman TC
    Arch Biochem Biophys; 1997 May; 341(2):353-9. PubMed ID: 9169026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insight into the phosphoryl transfer of the Escherichia coli glucose phosphotransferase system from QM/MM simulations.
    Jardin C; Horn AH; Schürer G; Sticht H
    J Phys Chem B; 2008 Oct; 112(42):13391-400. PubMed ID: 18816086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. S-phosphocysteine and phosphohistidine are intermediates in the phosphoenolpyruvate-dependent mannitol transport catalyzed by Escherichia coli EIIMtl.
    Pas HH; Robillard GT
    Biochemistry; 1988 Aug; 27(16):5835-9. PubMed ID: 3142516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monoselenophosphate: synthesis, characterization, and identity with the prokaryotic biological selenium donor, compound SePX.
    Glass RS; Singh WP; Jung W; Veres Z; Scholz TD; Stadtman TC
    Biochemistry; 1993 Nov; 32(47):12555-9. PubMed ID: 8251472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR structure of cysteinyl-phosphorylated enzyme IIB of the N,N'-diacetylchitobiose-specific phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli.
    Ab E; Schuurman-Wolters GK; Nijlant D; Dijkstra K; Saier MH; Robillard GT; Scheek RM
    J Mol Biol; 2001 May; 308(5):993-1009. PubMed ID: 11352587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dihydroxyacetone kinase of Escherichia coli utilizes a phosphoprotein instead of ATP as phosphoryl donor.
    Gutknecht R; Beutler R; Garcia-Alles LF; Baumann U; Erni B
    EMBO J; 2001 May; 20(10):2480-6. PubMed ID: 11350937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selenocysteine.
    Stadtman TC
    Annu Rev Biochem; 1996; 65():83-100. PubMed ID: 8811175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of selenocysteine as a source of selenium for selenophosphate biosynthesis.
    Lacourciere GM; Stadtman TC
    Biofactors; 2001; 14(1-4):69-74. PubMed ID: 11568442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The phosphoenolpyruvate:mannose phosphotransferase system of Streptococcus salivarius. Functional and biochemical characterization of IIABL(Man) and IIABH(Man).
    Pelletier M; Lortie LA; Frenette M; Vadeboncoeur C
    Biochemistry; 1998 Feb; 37(6):1604-12. PubMed ID: 9484231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of selenophosphate.
    Lacourciere GM
    Biofactors; 1999; 10(2-3):237-44. PubMed ID: 10609888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin.
    Biteau B; Labarre J; Toledano MB
    Nature; 2003 Oct; 425(6961):980-4. PubMed ID: 14586471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the nucleotide-binding subunit DhaL of the Escherichia coli dihydroxyacetone kinase.
    Oberholzer AE; Schneider P; Baumann U; Erni B
    J Mol Biol; 2006 Jun; 359(3):539-45. PubMed ID: 16647083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylated and dephosphorylated structures of pig heart, GTP-specific succinyl-CoA synthetase.
    Fraser ME; James MN; Bridger WA; Wolodko WT
    J Mol Biol; 2000 Jun; 299(5):1325-39. PubMed ID: 10873456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic properties of selenophosphate synthetases: comparison of the selenocysteine-containing enzyme from Haemophilus influenzae with the corresponding cysteine-containing enzyme from Escherichia coli.
    Lacourciere GM; Stadtman TC
    Proc Natl Acad Sci U S A; 1999 Jan; 96(1):44-8. PubMed ID: 9874769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose transporter of Escherichia coli: NMR characterization of the phosphocysteine form of the IIB(Glc) domain and its binding interface with the IIA(Glc) subunit.
    Gemmecker G; Eberstadt M; Buhr A; Lanz R; Grdadolnik SG; Kessler H; Erni B
    Biochemistry; 1997 Jun; 36(24):7408-17. PubMed ID: 9200688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.