These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 7917425)

  • 1. Molecular mechanisms of copper resistance and accumulation in bacteria.
    Cooksey DA
    FEMS Microbiol Rev; 1994 Aug; 14(4):381-6. PubMed ID: 7917425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins.
    Cha JS; Cooksey DA
    Proc Natl Acad Sci U S A; 1991 Oct; 88(20):8915-9. PubMed ID: 1924351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase.
    Lee YA; Hendson M; Panopoulos NJ; Schroth MN
    J Bacteriol; 1994 Jan; 176(1):173-88. PubMed ID: 8282694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of chromosomal homologs of the plasmid-borne copper resistance operon of Pseudomonas syringae.
    Lim CK; Cooksey DA
    J Bacteriol; 1993 Jul; 175(14):4492-8. PubMed ID: 8331076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae.
    Mills SD; Jasalavich CA; Cooksey DA
    J Bacteriol; 1993 Mar; 175(6):1656-64. PubMed ID: 8449873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The heavy metal tolerant soil bacterium Achromobacter sp. AO22 contains a unique copper homeostasis locus and two mer operons.
    Ng SP; Palombo EA; Bhave M
    J Microbiol Biotechnol; 2012 Jun; 22(6):742-53. PubMed ID: 22573150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of resistance to copper in Xanthomonas axonopodis pv. vesicatoria.
    Voloudakis AE; Reignier TM; Cooksey DA
    Appl Environ Microbiol; 2005 Feb; 71(2):782-9. PubMed ID: 15691931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper Hypersensitivity and Uptake in Pseudomonas syringae Containing Cloned Components of the Copper Resistance Operon.
    Cha JS; Cooksey DA
    Appl Environ Microbiol; 1993 May; 59(5):1671-4. PubMed ID: 16348944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper uptake and resistance in bacteria.
    Cooksey DA
    Mol Microbiol; 1993 Jan; 7(1):1-5. PubMed ID: 8437513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of copABCD operon from a copper-sensitive Pseudomonas putida strain.
    Adaikkalam V; Swarup S
    Can J Microbiol; 2005 Mar; 51(3):209-16. PubMed ID: 15920618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper resistance determinants in bacteria.
    Brown NL; Rouch DA; Lee BT
    Plasmid; 1992 Jan; 27(1):41-51. PubMed ID: 1741459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a copper-transport operon, copYAZ, from Streptococcus mutans.
    Vats N; Lee SF
    Microbiology (Reading); 2001 Mar; 147(Pt 3):653-662. PubMed ID: 11238972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper resistance mechanisms in bacteria and fungi.
    Cervantes C; Gutierrez-Corona F
    FEMS Microbiol Rev; 1994 Jun; 14(2):121-37. PubMed ID: 8049096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermolecular transfer of copper ions from the CopC protein of Pseudomonas syringae. Crystal structures of fully loaded Cu(I)Cu(II) forms.
    Zhang L; Koay M; Maher MJ; Xiao Z; Wedd AG
    J Am Chem Soc; 2006 May; 128(17):5834-50. PubMed ID: 16637653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Newer systems for bacterial resistances to toxic heavy metals.
    Silver S; Ji G
    Environ Health Perspect; 1994 Sep; 102 Suppl 3(Suppl 3):107-13. PubMed ID: 7843081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper resistance in bacteria.
    Trevors JT
    Microbiol Sci; 1987 Jan; 4(1):29-31. PubMed ID: 3153166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characterization of copA gene encoding multicopper oxidase in Xanthomonas campestris pv. campestris.
    Hsiao YM; Liu YF; Lee PY; Hsu PC; Tseng SY; Pan YC
    J Agric Food Chem; 2011 Sep; 59(17):9290-302. PubMed ID: 21790191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of copper and other metals by copper-resistant plant-pathogenic and saprophytic pseudomonads.
    Cooksey DA; Azad HR
    Appl Environ Microbiol; 1992 Jan; 58(1):274-8. PubMed ID: 16348627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A redox switch in CopC: an intriguing copper trafficking protein that binds copper(I) and copper(II) at different sites.
    Arnesano F; Banci L; Bertini I; Mangani S; Thompsett AR
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3814-9. PubMed ID: 12651950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Similarity between Copper Resistance Genes from Xanthomonas campestris and Pseudomonas syringae.
    Voloudakis AE; Bender CL; Cooksey DA
    Appl Environ Microbiol; 1993 May; 59(5):1627-34. PubMed ID: 16348942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.