These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 791750)

  • 21. Reciprocal recurrent selection for 21-day litter weight of crossbred gilts. II. Reproductive performance of purebred females producing purebred and two-way cross litters and performance of purebred and crossbred pigs.
    Young LD; Omtvedt IT; Whatley JA; Johnson RK
    J Anim Sci; 1983 Dec; 57(6):1431-9. PubMed ID: 6674283
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genomic prediction of crossbred performance based on purebred Landrace and Yorkshire data using a dominance model.
    Esfandyari H; Bijma P; Henryon M; Christensen OF; Sørensen AC
    Genet Sel Evol; 2016 Jun; 48(1):40. PubMed ID: 27276993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-term genomic selection for heterosis without dominance in multiplicative traits: case study of bunch production in oil palm.
    Cros D; Denis M; Bouvet JM; Sánchez L
    BMC Genomics; 2015 Aug; 16(1):651. PubMed ID: 26318484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional molecular markers (EST-SSR) in the full-sib reciprocal recurrent selection program of maize (Zea mays L.).
    Galvão KS; Ramos HC; Santos PH; Entringer GC; Vettorazzi JC; Pereira MG
    Genet Mol Res; 2015 Jul; 14(3):7344-55. PubMed ID: 26214413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for overdominant selection maintaining X-linked fitness variation in Drosophila melanogaster.
    Connallon T; Knowles LL
    Evolution; 2006 Jul; 60(7):1445-53. PubMed ID: 16929661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of two-locus linkage disequilibrium on progress from reciprocal recurrent selection in maize.
    Johnson GR
    Theor Appl Genet; 1983 Mar; 64(4):295-301. PubMed ID: 24265077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulation of cyclic single cross selection.
    Ehdaie B; Cress CE
    Theor Appl Genet; 1973 Jan; 43(8):374-80. PubMed ID: 24425294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relative roles of mutation and selection in the maintenance of genetic variability.
    Nei M
    Philos Trans R Soc Lond B Biol Sci; 1988 Jul; 319(1196):615-29. PubMed ID: 2905496
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action.
    Edwards MD; Stuber CW; Wendel JF
    Genetics; 1987 May; 116(1):113-25. PubMed ID: 3596228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reciprocal Recurrent Selection Compared to within-Strain Selection for Increasing Rate of Egg Lay of Tribolium under Optimal and Stress Conditions.
    Orozco F; Bell AE
    Genetics; 1974 May; 77(1):143-61. PubMed ID: 17248651
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pleiotropic models of polygenic variation, stabilizing selection, and epistasis.
    Gavrilets S; de Jong G
    Genetics; 1993 Jun; 134(2):609-25. PubMed ID: 8325491
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimating within-locus nonadditive coefficient and discriminating dominance versus overdominance as the genetic cause of heterosis.
    Deng HW
    Genetics; 1998 Apr; 148(4):2003-14. PubMed ID: 9560413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci.
    Takahata N; Nei M
    Genetics; 1990 Apr; 124(4):967-78. PubMed ID: 2323559
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Maximizing crossbred performance through purebred genomic selection.
    Esfandyari H; Sørensen AC; Bijma P
    Genet Sel Evol; 2015 Mar; 47(1):16. PubMed ID: 25887297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of molecular markers in reciprocal recurrent selection of maize increases heterosis effects.
    Berilli AP; Pereira MG; Gonçalves LS; da Cunha KS; Ramos HC; Souza Filho GA; do Amaral Júnior AT
    Genet Mol Res; 2011 Oct; 10(4):2589-96. PubMed ID: 22057955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selfing confirmation in sugarcane by using simple sequence repeat markers: an individual reciprocal recurrent selection scheme.
    Costa PM; Almeida CF; Silveira G; Soares B; Baffa DC; Peternelli LA; Bhering LL; Barbosa MH
    Genet Mol Res; 2014 Oct; 13(4):8962-70. PubMed ID: 25366787
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fixation time of overdominant alleles influenced by random fluctuation of selection intensity.
    Ohta T; Kimura M
    Genet Res; 1972 Aug; 20(1):1-7. PubMed ID: 5084411
    [No Abstract]   [Full Text] [Related]  

  • 38. Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines.
    Frascaroli E; Canè MA; Landi P; Pea G; Gianfranceschi L; Villa M; Morgante M; Pè ME
    Genetics; 2007 May; 176(1):625-44. PubMed ID: 17339211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic dissection of yield-related traits and mid-parent heterosis for those traits in maize (Zea mays L.).
    Yi Q; Liu Y; Hou X; Zhang X; Li H; Zhang J; Liu H; Hu Y; Yu G; Li Y; Wang Y; Huang Y
    BMC Plant Biol; 2019 Sep; 19(1):392. PubMed ID: 31500559
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Asexual but Not Clonal: Evolutionary Processes in Automictic Populations.
    Engelstädter J
    Genetics; 2017 Jun; 206(2):993-1009. PubMed ID: 28381586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.