These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 7917834)
1. Transport mechanism of glutamate by hypotonic-treated glial plasmalemmal vesicles from rat hippocampus. Effects of concentration gradients of Na+ and K+ and of ionophores. Nakamura Y; Kataoka K J Mol Neurosci; 1993; 4(4):255-62. PubMed ID: 7917834 [TBL] [Abstract][Full Text] [Related]
2. Glial plasmalemmal vesicles: a subcellular fraction from rat hippocampal homogenate distinct from synaptosomes. Nakamura Y; Iga K; Shibata T; Shudo M; Kataoka K Glia; 1993 Sep; 9(1):48-56. PubMed ID: 7902337 [TBL] [Abstract][Full Text] [Related]
3. Stimulation of human cheek cell Na+/H+ antiporter activity by saliva and salivary electrolytes: amplification by nigericin. Patten GS; Leifert WR; Burnard SL; Head RJ; McMurchie EJ Mol Cell Biochem; 1996 Jan; 154(2):133-41. PubMed ID: 8717427 [TBL] [Abstract][Full Text] [Related]
4. Glutamate transport in Rhodobacter sphaeroides is mediated by a novel binding protein-dependent secondary transport system. Jacobs MH; van der Heide T; Driessen AJ; Konings WN Proc Natl Acad Sci U S A; 1996 Nov; 93(23):12786-90. PubMed ID: 8917497 [TBL] [Abstract][Full Text] [Related]
5. Molecular mechanism of iodide transport by thyroid plasmalemmal vesicles: cooperative sodium activation and asymmetrical affinities for the ions on the outside and inside of the vesicles. Nakamura Y; Ohtaki S; Yamazaki I J Biochem; 1988 Oct; 104(4):544-9. PubMed ID: 3240996 [TBL] [Abstract][Full Text] [Related]
6. Electrogenic and nonelectrogenic ion fluxes across lipid and mitochondrial membranes mediated by monensin and monensin ethyl ester. Antonenko YN; Rokitskaya TI; Huczyński A Biochim Biophys Acta; 2015 Apr; 1848(4):995-1004. PubMed ID: 25600660 [TBL] [Abstract][Full Text] [Related]
7. Active transport of L-glutamate by membrane vesicles isolated from rat brain. Kanner BI; Sharon I Biochemistry; 1978 Sep; 17(19):3949-53. PubMed ID: 708689 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the human plasmalemmal carnitine transporter in cultured skin fibroblasts. Tein I; Bukovac SW; Xie ZW Arch Biochem Biophys; 1996 May; 329(2):145-55. PubMed ID: 8638946 [TBL] [Abstract][Full Text] [Related]
9. Sodium-dependent glutamate uptake by an alkaliphilic, thermophilic Bacillus strain, TA2.A1. Peddie CJ; Cook GM; Morgan HW J Bacteriol; 1999 May; 181(10):3172-7. PubMed ID: 10322019 [TBL] [Abstract][Full Text] [Related]
10. The effect of membrane potential on the mammalian sodium-potassium pump reconstituted into phospholipid vesicles. Goldshlegger R; Karlish SJ; Rephaeli A; Stein WD J Physiol; 1987 Jun; 387():331-55. PubMed ID: 2443682 [TBL] [Abstract][Full Text] [Related]
11. [Studies on the mechanism of placental transport of L-glutamate (the effect of K+ in microvillous vesicles on L-glutamate uptake)]. Iioka H; Moriyama I; Itoh K; Hino K; Ichijo M Nihon Sanka Fujinka Gakkai Zasshi; 1985 Oct; 37(10):2005-9. PubMed ID: 4078404 [TBL] [Abstract][Full Text] [Related]
12. Effects of L-glutamate/D-aspartate and monensin on lactic acid production in retina and cultured retinal Müller cells. Winkler BS; Sauer MW; Starnes CA J Neurochem; 2004 Apr; 89(2):514-25. PubMed ID: 15056294 [TBL] [Abstract][Full Text] [Related]
13. Effect of nigericin, monensin, and tetronasin on biohydrogenation in continuous flow-through ruminal fermenters. Fellner V; Sauer FD; Kramer JK J Dairy Sci; 1997 May; 80(5):921-8. PubMed ID: 9178132 [TBL] [Abstract][Full Text] [Related]
14. Light-induced glutamate transport in Halobacterium halobium envelope vesicles. I. Kinetics of the light-dependent and the sodium-gradient-dependent uptake. Lanyi JK; Yearwood-Drayton V; MacDonald RE Biochemistry; 1976 Apr; 15(8):1595-603. PubMed ID: 1268186 [TBL] [Abstract][Full Text] [Related]
15. Tyrosine transport by membrane vesicles isolated from rat brain. Aragón MC; Giménez C; Mayor F; Marvizón JG; Valdivieso F Biochim Biophys Acta; 1981 Sep; 646(3):465-70. PubMed ID: 7284373 [TBL] [Abstract][Full Text] [Related]
16. Inhibition by K+ of Na+-dependent D-aspartate uptake into brain membrane saccules. Danbolt NC; Storm-Mathisen J J Neurochem; 1986 Sep; 47(3):825-30. PubMed ID: 2426409 [TBL] [Abstract][Full Text] [Related]
17. Valinomycin-induced iodide leakage without impairment in sodium-dependent iodide transport in the thyroid. Saito K; Yamamoto K; Takai T; Yoshida S Endocrinology; 1983 Sep; 113(3):1031-5. PubMed ID: 6872949 [TBL] [Abstract][Full Text] [Related]
18. Voltage-driven p-aminohippurate, chloride, and urate transport in porcine renal brush-border membrane vesicles. Krick W; Wolff NA; Burckhardt G Pflugers Arch; 2000 Nov; 441(1):125-32. PubMed ID: 11205051 [TBL] [Abstract][Full Text] [Related]
19. Roles of the Na,K-ATPase alpha4 isoform and the Na+/H+ exchanger in sperm motility. Woo AL; James PF; Lingrel JB Mol Reprod Dev; 2002 Jul; 62(3):348-56. PubMed ID: 12112599 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms of ionophore-induced stimulation of renin secretion with special reference to a chemiosmotic hypothesis. Park CS; Honeyman TW; Ha SK; Choi HK; Chung CL; Hong CD J Pharmacol Exp Ther; 1991 Oct; 259(1):211-8. PubMed ID: 1920117 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]