BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 7918371)

  • 1. Nonadditivity of mutational effects at the folate binding site of Escherichia coli dihydrofolate reductase.
    Huang Z; Wagner CR; Benkovic SJ
    Biochemistry; 1994 Sep; 33(38):11576-85. PubMed ID: 7918371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis for nonadditive mutational effects in Escherichia coli dihydrofolate reductase.
    Wagner CR; Huang Z; Singleton SF; Benkovic SJ
    Biochemistry; 1995 Dec; 34(48):15671-80. PubMed ID: 7495797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering specificity for folate into dihydrofolate reductase from Escherichia coli.
    Posner BA; Li L; Bethell R; Tsuji T; Benkovic SJ
    Biochemistry; 1996 Feb; 35(5):1653-63. PubMed ID: 8634297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the active-site carboxylate in dihydrofolate reductase: kinetic and spectroscopic studies of the aspartate 26-->asparagine mutant of the Lactobacillus casei enzyme.
    Basran J; Casarotto MG; Barsukov IL; Roberts GC
    Biochemistry; 1995 Mar; 34(9):2872-82. PubMed ID: 7893701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-directed mutagenesis of mouse dihydrofolate reductase. Mutants with increased resistance to methotrexate and trimethoprim.
    Thillet J; Absil J; Stone SR; Pictet R
    J Biol Chem; 1988 Sep; 263(25):12500-8. PubMed ID: 3045118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of point mutations in a hinge region on the stability, folding, and enzymatic activity of Escherichia coli dihydrofolate reductase.
    Ahrweiler PM; Frieden C
    Biochemistry; 1991 Aug; 30(31):7801-9. PubMed ID: 1868058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant.
    Cameron CE; Benkovic SJ
    Biochemistry; 1997 Dec; 36(50):15792-800. PubMed ID: 9398309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling interactions of distal residues enhance dihydrofolate reductase catalysis: mutational effects on hydride transfer rates.
    Rajagopalan PT; Lutz S; Benkovic SJ
    Biochemistry; 2002 Oct; 41(42):12618-28. PubMed ID: 12379104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobic interactions via mutants of Escherichia coli dihydrofolate reductase: separation of binding and catalysis.
    Murphy DJ; Benkovic SJ
    Biochemistry; 1989 Apr; 28(7):3025-31. PubMed ID: 2663066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of loop region residues 40-46 in human dihydrofolate reductase as revealed by site-directed mutagenesis.
    Tan XH; Huang SM; Ratnam M; Thompson PD; Freisheim JH
    J Biol Chem; 1990 May; 265(14):8027-32. PubMed ID: 2186034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementary perturbation of the kinetic mechanism and catalytic effectiveness of dihydrofolate reductase by side-chain interchange.
    Wagner CR; Thillet J; Benkovic SJ
    Biochemistry; 1992 Sep; 31(34):7834-40. PubMed ID: 1510969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of ionic interactions in ligand binding and catalysis of R67 dihydrofolate reductase.
    Hicks SN; Smiley RD; Hamilton JB; Howell EE
    Biochemistry; 2003 Sep; 42(36):10569-78. PubMed ID: 12962480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the functional role of tryptophan-22 in Escherichia coli dihydrofolate reductase by site-directed mutagenesis.
    Warren MS; Brown KA; Farnum MF; Howell EE; Kraut J
    Biochemistry; 1991 Nov; 30(46):11092-103. PubMed ID: 1932031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the functional role of threonine-113 of Escherichia coli dihydrofolate reductase for its effect on turnover efficiency, catalysis, and binding.
    Fierke CA; Benkovic SJ
    Biochemistry; 1989 Jan; 28(2):478-86. PubMed ID: 2496745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of Escherichia coli dihydrofolate reductase: the NADP+ holoenzyme and the folate.NADP+ ternary complex. Substrate binding and a model for the transition state.
    Bystroff C; Oatley SJ; Kraut J
    Biochemistry; 1990 Apr; 29(13):3263-77. PubMed ID: 2185835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A glutamine 67--> histidine mutation in homotetrameric R67 dihydrofolate reductase results in four mutations per single active site pore and causes substantial substrate and cofactor inhibition.
    Park H; Bradrick TD; Howell EE
    Protein Eng; 1997 Dec; 10(12):1415-24. PubMed ID: 9543003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional role of a mobile loop of Escherichia coli dihydrofolate reductase in transition-state stabilization.
    Li L; Falzone CJ; Wright PE; Benkovic SJ
    Biochemistry; 1992 Sep; 31(34):7826-33. PubMed ID: 1510968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tales of Dihydrofolate Binding to R67 Dihydrofolate Reductase.
    Duff MR; Chopra S; Strader MB; Agarwal PK; Howell EE
    Biochemistry; 2016 Jan; 55(1):133-45. PubMed ID: 26637016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of distal point-site mutations on the binding and catalysis of dihydrofolate reductase from Escherichia coli.
    Adams J; Johnson K; Matthews R; Benkovic SJ
    Biochemistry; 1989 Aug; 28(16):6611-8. PubMed ID: 2675972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of arginine to lysine at position 70 of human dihydrofolate reductase: generation of a methotrexate-insensitive mutant enzyme.
    Thompson PD; Freisheim JH
    Biochemistry; 1991 Aug; 30(33):8124-30. PubMed ID: 1907850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.