These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 7918374)
1. Fluorescence studies of phosphatidylcholine micelle mixing: relevance to phospholipase kinetics. Soltys CE; Roberts MF Biochemistry; 1994 Sep; 33(38):11608-17. PubMed ID: 7918374 [TBL] [Abstract][Full Text] [Related]
2. Lipid exchange between mixed micelles of phospholipid and triton X-100. Thomas MJ; Pang K; Chen Q; Lyles D; Hantgan R; Waite M Biochim Biophys Acta; 1999 Feb; 1417(1):144-56. PubMed ID: 10076043 [TBL] [Abstract][Full Text] [Related]
3. Kinetic analysis of phospholipid exchange between phosphatidylcholine/taurocholate mixed micelles: effect of the acyl chain moiety of the micellar phosphatidylcholine. Fullington DA; Nichols JW Biochemistry; 1993 Nov; 32(47):12678-84. PubMed ID: 8251487 [TBL] [Abstract][Full Text] [Related]
4. Diacylglycerol partitioning and mixing in detergent micelles: relevance to enzyme kinetics. Zhou C; Roberts MF Biochim Biophys Acta; 1997 Oct; 1348(3):273-86. PubMed ID: 9366244 [TBL] [Abstract][Full Text] [Related]
5. Temperature dependence of the vesicle-micelle transition of egg phosphatidylcholine and octyl glucoside. da Graça Miguel M; Eidelman O; Ollivon M; Walter A Biochemistry; 1989 Oct; 28(22):8921-8. PubMed ID: 2605233 [TBL] [Abstract][Full Text] [Related]
6. Composition of octyl glucoside-phosphatidylcholine mixed micelles. Eidelman O; Blumenthal R; Walter A Biochemistry; 1988 Apr; 27(8):2839-46. PubMed ID: 3401451 [TBL] [Abstract][Full Text] [Related]
7. Pyrene-labeled gangliosides: micelle formation in aqueous solution, lateral diffusion, and thermotropic behavior in phosphatidylcholine bilayers. Ollmann M; Schwarzmann G; Sandhoff K; Galla HJ Biochemistry; 1987 Sep; 26(18):5943-52. PubMed ID: 3676298 [TBL] [Abstract][Full Text] [Related]
8. Laser light scattering evidence for a common wormlike growth structure of mixed micelles in bile salt- and straight-chain detergent-phosphatidylcholine aqueous systems: relevance to the micellar structure of bile. Cohen DE; Thurston GM; Chamberlin RA; Benedek GB; Carey MC Biochemistry; 1998 Oct; 37(42):14798-814. PubMed ID: 9778354 [TBL] [Abstract][Full Text] [Related]
9. Phospholipid transfer between phosphatidylcholine-taurocholate mixed micelles. Nichols JW Biochemistry; 1988 May; 27(11):3925-31. PubMed ID: 3415964 [TBL] [Abstract][Full Text] [Related]
10. Origin of laurdan sensitivity to the vesicle-to-micelle transition of phospholipid-octylglucoside system: a time-resolved fluorescence study. Viard M; Gallay J; Vincent M; Paternostre M Biophys J; 2001 Jan; 80(1):347-59. PubMed ID: 11159407 [TBL] [Abstract][Full Text] [Related]
11. The vesicle-to-micelle transition of phosphatidylcholine vesicles induced by nonionic detergents: effects of sodium chloride, sucrose and urea. Walter A; Kuehl G; Barnes K; VanderWaerdt G Biochim Biophys Acta; 2000 Nov; 1508(1-2):20-33. PubMed ID: 11090816 [TBL] [Abstract][Full Text] [Related]
12. Fluorescent probe studies of mixed micelles of phospholipids and bile salts. Effect of cholesterol incorporation. Narayanan R; Paul R; Balaram P Biochim Biophys Acta; 1980 Mar; 597(1):70-82. PubMed ID: 7370247 [TBL] [Abstract][Full Text] [Related]
13. Polymerizable phosphatidylcholines: importance of phospholipid motions for optimum phospholipase A2 and C activity. Soltys CE; Bian J; Roberts MF Biochemistry; 1993 Sep; 32(37):9545-52. PubMed ID: 8373761 [TBL] [Abstract][Full Text] [Related]
14. Sensitivity of phospholipase C (Bacillus cereus) activity to phosphatidylcholine structural modifications. el-Sayed MY; DeBose CD; Coury LA; Roberts MF Biochim Biophys Acta; 1985 Dec; 837(3):325-35. PubMed ID: 3933566 [TBL] [Abstract][Full Text] [Related]
15. Partition coefficient of a surfactant between aggregates and solution: application to the micelle-vesicle transition of egg phosphatidylcholine and octyl beta-D-glucopyranoside. Paternostre M; Meyer O; Grabielle-Madelmont C; Lesieur S; Ghanam M; Ollivon M Biophys J; 1995 Dec; 69(6):2476-88. PubMed ID: 8599654 [TBL] [Abstract][Full Text] [Related]
16. Kinetic model for surface-active enzymes based on the Langmuir adsorption isotherm: phospholipase C (Bacillus cereus) activity toward dimyristoyl phosphatidylcholine/detergent micelles. Burns RA; El-Sayed MY; Roberts MF Proc Natl Acad Sci U S A; 1982 Aug; 79(16):4902-6. PubMed ID: 6812057 [TBL] [Abstract][Full Text] [Related]
17. Methyl branching in short-chain lecithins: are both chains important for effective phospholipase A2 activity? DeBose CD; Burns RA; Donovan JM; Roberts MF Biochemistry; 1985 Mar; 24(6):1298-306. PubMed ID: 3986178 [TBL] [Abstract][Full Text] [Related]
18. The use of C6-NBD-PC for assaying phospholipase A2-activity: scope and limitations. Meyuhas D; Yedgar S; Rotenberg M; Reisfeld N; Lichtenberg D Biochim Biophys Acta; 1992 Mar; 1124(3):223-32. PubMed ID: 1576162 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the kinetics of phospholipase C activity toward mixed micelles of sodium deoxycholate and dimyristoylphosphatidylcholine. Ranganathan R; Tcacenco CM; Rosseto R; Hajdu J Biophys Chem; 2006 Jul; 122(2):79-89. PubMed ID: 16556477 [TBL] [Abstract][Full Text] [Related]
20. An optical study of the exchange kinetics of membrane bound molecules. Sengupta P; Sackmann E; Kühnle W; Scholz HP Biochim Biophys Acta; 1976 Jul; 436(4):869-78. PubMed ID: 952921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]