BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 7918401)

  • 1. Regulation of cytochrome c oxidase by interaction of ATP at two binding sites, one on subunit VIa.
    Taanman JW; Turina P; Capaldi RA
    Biochemistry; 1994 Oct; 33(39):11833-41. PubMed ID: 7918401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The number of nucleotide binding sites in cytochrome C oxidase.
    Rieger T; Napiwotzki J; Hüther FJ; Kadenbach B
    Biochem Biophys Res Commun; 1995 Dec; 217(1):34-40. PubMed ID: 8526931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP-regulation of cytochrome oxidase in yeast mitochondria: role of subunit VIa.
    Beauvoit B; Bunoust O; Guérin B; Rigoulet M
    Eur J Biochem; 1999 Jul; 263(1):118-27. PubMed ID: 10429195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytochrome c oxidase from eucaryotes but not from procaryotes is allosterically inhibited by ATP.
    Follmann K; Arnold S; Ferguson-Miller S; Kadenbach B
    Biochem Mol Biol Int; 1998 Aug; 45(5):1047-55. PubMed ID: 9739469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific effects of ATP on the kinetics of reconstituted bovine heart cytochrome-c oxidase.
    Hüther FJ; Kadenbach B
    FEBS Lett; 1986 Oct; 207(1):89-94. PubMed ID: 3021530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of respiration and energy transduction in cytochrome c oxidase isozymes by allosteric effectors.
    Kadenbach B; Frank V; Rieger T; Napiwotzki J
    Mol Cell Biochem; 1997 Sep; 174(1-2):131-5. PubMed ID: 9309677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the nucleotide binding properties of SV40 T antigen using fluorescent 3'(2')-O-(2,4,6-trinitrophenyl)adenine nucleotide analogues.
    Huang SG; Weisshart K; Fanning E
    Biochemistry; 1998 Nov; 37(44):15336-44. PubMed ID: 9799494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anions induce conformational changes and influence the activity and photoaffinity-labelling by 8-azido-ATP of isolated cytochrome c oxidase.
    Reimann A; Hüther FJ; Berden JA; Kadenbach B
    Biochem J; 1988 Sep; 254(3):723-30. PubMed ID: 2848497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP induces conformational changes in mitochondrial cytochrome c oxidase. Effect on the cytochrome c binding site.
    Bisson R; Schiavo G; Montecucco C
    J Biol Chem; 1987 May; 262(13):5992-8. PubMed ID: 3032951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP binding to bovine heart cytochrome c oxidase. A photoaffinity labelling study.
    Montecucco C; Schiavo G; Bisson R
    Biochem J; 1986 Feb; 234(1):241-3. PubMed ID: 3010954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subunit VIa of yeast cytochrome c oxidase is not necessary for assembly of the enzyme complex but modulates the enzyme activity. Isolation and characterization of the nuclear-coded gene.
    Taanman JW; Capaldi RA
    J Biol Chem; 1993 Sep; 268(25):18754-61. PubMed ID: 8395517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraliposomal nucleotides change the kinetics of reconstituted cytochrome c oxidase from bovine heart but not from Paracoccus denitrificans.
    Hüther FJ; Kadenbach B
    Biochem Biophys Res Commun; 1988 Jun; 153(2):525-34. PubMed ID: 2838021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase.
    Ferguson-Miller S; Brautigan DL; Margoliash E
    J Biol Chem; 1976 Feb; 251(4):1104-15. PubMed ID: 2600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloroplast F1 ATPase has more than three nucleotide binding sites, and 2-azido-ADP or 2-azido-ATP at both catalytic and noncatalytic sites labels the beta subunit.
    Xue ZX; Zhou JM; Melese T; Cross RL; Boyer PD
    Biochemistry; 1987 Jun; 26(13):3749-53. PubMed ID: 2888481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of 8-azido-ATP and other anions on the activity of cytochrome c oxidase.
    Hüther FJ; Berden J; Kadenbach B
    J Bioenerg Biomembr; 1988 Aug; 20(4):503-16. PubMed ID: 2851591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TNP-ATP and TNP-ADP as probes of the nucleotide binding site of CheA, the histidine protein kinase in the chemotaxis signal transduction pathway of Escherichia coli.
    Stewart RC; VanBruggen R; Ellefson DD; Wolfe AJ
    Biochemistry; 1998 Sep; 37(35):12269-79. PubMed ID: 9724541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stoichiometric binding of 2'(or 3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate to bovine heart cytochrome c oxidase.
    Reimann A; Kadenbach B
    FEBS Lett; 1992 Aug; 307(3):294-6. PubMed ID: 1322834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of energy transduction and electron transfer in cytochrome c oxidase by adenine nucleotides.
    Kadenbach B; Napiwotzki J; Frank V; Arnold S; Exner S; Hüttemann M
    J Bioenerg Biomembr; 1998 Feb; 30(1):25-33. PubMed ID: 9623802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of deletion of the genes encoding the 40 kDa subunit II or the 17 kDa subunit VI on the steady-state kinetics of yeast ubiquinol-cytochrome-c oxidoreductase.
    Schoppink PJ; Hemrika W; Berden JA
    Biochim Biophys Acta; 1989 May; 974(2):192-201. PubMed ID: 2540835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extramitochondrial ATP/ADP-ratios regulate cytochrome c oxidase activity via binding to the cytosolic domain of subunit IV.
    Napiwotzki J; Kadenbach B
    Biol Chem; 1998 Mar; 379(3):335-9. PubMed ID: 9563830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.