These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 7918416)

  • 1. Melting of a DNA helix terminus within the active site of a DNA polymerase.
    Hochstrasser RA; Carver TE; Sowers LC; Millar DP
    Biochemistry; 1994 Oct; 33(39):11971-9. PubMed ID: 7918416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of DNA polymerase I (Klenow fragment) with DNA substrates containing extrahelical bases: implications for proofreading of frameshift errors during DNA synthesis.
    Lam WC; Van der Schans EJ; Sowers LC; Millar DP
    Biochemistry; 1999 Mar; 38(9):2661-8. PubMed ID: 10052936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition of sequence-directed DNA structure by the Klenow fragment of DNA polymerase I.
    Carver TE; Millar DP
    Biochemistry; 1998 Feb; 37(7):1898-904. PubMed ID: 9485315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of 5'-nearest neighbors on the insertion kinetics of the fluorescent nucleotide analog 2-aminopurine by Klenow fragment.
    Bloom LB; Otto MR; Beechem JM; Goodman MF
    Biochemistry; 1993 Oct; 32(41):11247-58. PubMed ID: 8218190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proofreading DNA: recognition of aberrant DNA termini by the Klenow fragment of DNA polymerase I.
    Carver TE; Hochstrasser RA; Millar DP
    Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10670-4. PubMed ID: 7938011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases.
    Cowart M; Gibson KJ; Allen DJ; Benkovic SJ
    Biochemistry; 1989 Mar; 28(5):1975-83. PubMed ID: 2541768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3'-5' exonuclease of Klenow fragment: role of amino acid residues within the single-stranded DNA binding region in exonucleolysis and duplex DNA melting.
    Lam WC; Thompson EH; Potapova O; Sun XC; Joyce CM; Millar DP
    Biochemistry; 2002 Mar; 41(12):3943-51. PubMed ID: 11900537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of Escherichia coli DNA polymerase I with azidoDNA and fluorescent DNA probes: identification of protein-DNA contacts.
    Catalano CE; Allen DJ; Benkovic SJ
    Biochemistry; 1990 Apr; 29(15):3612-21. PubMed ID: 2187527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre-steady-state kinetic analysis of sequence-dependent nucleotide excision by the 3'-exonuclease activity of bacteriophage T4 DNA polymerase.
    Bloom LB; Otto MR; Eritja R; Reha-Krantz LJ; Goodman MF; Beechem JM
    Biochemistry; 1994 Jun; 33(24):7576-86. PubMed ID: 8011623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of terminal base pair hydrogen-bonding in 3'-end proofreading by the Klenow fragment of DNA polymerase I.
    Morales JC; Kool ET
    Biochemistry; 2000 Mar; 39(10):2626-32. PubMed ID: 10704212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determinants of DNA mismatch recognition within the polymerase domain of the Klenow fragment.
    Thompson EH; Bailey MF; van der Schans EJ; Joyce CM; Millar DP
    Biochemistry; 2002 Jan; 41(3):713-22. PubMed ID: 11790092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase.
    Beechem JM; Otto MR; Bloom LB; Eritja R; Reha-Krantz LJ; Goodman MF
    Biochemistry; 1998 Jul; 37(28):10144-55. PubMed ID: 9665720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fidelity of DNA synthesis catalyzed by derivatives of Escherichia coli DNA polymerase I.
    Bebenek K; Joyce CM; Fitzgerald MP; Kunkel TA
    J Biol Chem; 1990 Aug; 265(23):13878-87. PubMed ID: 2199444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cocrystal structure of an editing complex of Klenow fragment with DNA.
    Freemont PS; Friedman JM; Beese LS; Sanderson MR; Steitz TA
    Proc Natl Acad Sci U S A; 1988 Dec; 85(23):8924-8. PubMed ID: 3194400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of mutations on the partitioning of DNA substrates between the polymerase and 3'-5' exonuclease sites of DNA polymerase I (Klenow fragment).
    Lam WC; Van der Schans EJ; Joyce CM; Millar DP
    Biochemistry; 1998 Feb; 37(6):1513-22. PubMed ID: 9484221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of DNA with the Klenow fragment of DNA polymerase I studied by time-resolved fluorescence spectroscopy.
    Guest CR; Hochstrasser RA; Dupuy CG; Allen DJ; Benkovic SJ; Millar DP
    Biochemistry; 1991 Sep; 30(36):8759-70. PubMed ID: 1888736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of DNA polymerase I Klenow fragment bound to duplex DNA.
    Beese LS; Derbyshire V; Steitz TA
    Science; 1993 Apr; 260(5106):352-5. PubMed ID: 8469987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing DNA polymerase fidelity mechanisms using time-resolved fluorescence anisotropy.
    Bailey MF; Thompson EH; Millar DP
    Methods; 2001 Sep; 25(1):62-77. PubMed ID: 11558998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase.
    Otto MR; Bloom LB; Goodman MF; Beechem JM
    Biochemistry; 1998 Jul; 37(28):10156-63. PubMed ID: 9665721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nucleotide analog 2-aminopurine as a spectroscopic probe of nucleotide incorporation by the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase.
    Frey MW; Sowers LC; Millar DP; Benkovic SJ
    Biochemistry; 1995 Jul; 34(28):9185-92. PubMed ID: 7619819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.