BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 7918419)

  • 1. The retinal Schiff base-counterion complex of bacteriorhodopsin: changed geometry during the photocycle is a cause of proton transfer to aspartate 85.
    Brown LS; Gat Y; Sheves M; Yamazaki Y; Maeda A; Needleman R; Lanyi JK
    Biochemistry; 1994 Oct; 33(40):12001-11. PubMed ID: 7918419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimated acid dissociation constants of the Schiff base, Asp-85, and Arg-82 during the bacteriorhodopsin photocycle.
    Brown LS; Bonet L; Needleman R; Lanyi JK
    Biophys J; 1993 Jul; 65(1):124-30. PubMed ID: 8369421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy coupling in an ion pump. The reprotonation switch of bacteriorhodopsin.
    Kataoka M; Kamikubo H; Tokunaga F; Brown LS; Yamazaki Y; Maeda A; Sheves M; Needleman R; Lanyi JK
    J Mol Biol; 1994 Nov; 243(4):621-38. PubMed ID: 7966287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship of proton release at the extracellular surface to deprotonation of the schiff base in the bacteriorhodopsin photocycle.
    Cao Y; Brown LS; Sasaki J; Maeda A; Needleman R; Lanyi JK
    Biophys J; 1995 Apr; 68(4):1518-30. PubMed ID: 7787037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ determination of transient pKa changes of internal amino acids of bacteriorhodopsin by using time-resolved attenuated total reflection Fourier-transform infrared spectroscopy.
    Zscherp C; Schlesinger R; Tittor J; Oesterhelt D; Heberle J
    Proc Natl Acad Sci U S A; 1999 May; 96(10):5498-503. PubMed ID: 10318912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourier transform infrared double-flash experiments resolve bacteriorhodopsin's M1 to M2 transition.
    Hessling B; Herbst J; Rammelsberg R; Gerwert K
    Biophys J; 1997 Oct; 73(4):2071-80. PubMed ID: 9336202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathway of proton uptake in the bacteriorhodopsin photocycle.
    Zimányi L; Cao Y; Needleman R; Ottolenghi M; Lanyi JK
    Biochemistry; 1993 Aug; 32(30):7669-78. PubMed ID: 8347577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The complex extracellular domain regulates the deprotonation and reprotonation of the retinal Schiff base during the bacteriorhodopsin photocycle.
    Brown LS; Váró G; Hatanaka M; Sasaki J; Kandori H; Maeda A; Friedman N; Sheves M; Nedleman R; Lanyi JK
    Biochemistry; 1995 Oct; 34(39):12903-11. PubMed ID: 7548047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin.
    Kandori H
    Biochim Biophys Acta; 2004 Jul; 1658(1-2):72-9. PubMed ID: 15282177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site.
    Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H
    Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton transfer from Asp-96 to the bacteriorhodopsin Schiff base is caused by a decrease of the pKa of Asp-96 which follows a protein backbone conformational change.
    Cao Y; Váró G; Klinger AL; Czajkowsky DM; Braiman MS; Needleman R; Lanyi JK
    Biochemistry; 1993 Mar; 32(8):1981-90. PubMed ID: 8448157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The proton transfers in the cytoplasmic domain of bacteriorhodopsin are facilitated by a cluster of interacting residues.
    Brown LS; Yamazaki Y; Maeda A; Sun L; Needleman R; Lanyi JK
    J Mol Biol; 1994 Jun; 239(3):401-14. PubMed ID: 8201621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local-access model for proton transfer in bacteriorhodopsin.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biochemistry; 1998 Mar; 37(11):3982-93. PubMed ID: 9521720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The two consecutive M substates in the photocycle of bacteriorhodopsin are affected specifically by the D85N and D96N residue replacements.
    Zimányi L; Cao Y; Chang M; Ni B; Needleman R; Lanyi JK
    Photochem Photobiol; 1992 Dec; 56(6):1049-55. PubMed ID: 1337212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface.
    Dioumaev AK; Richter HT; Brown LS; Tanio M; Tuzi S; Saito H; Kimura Y; Needleman R; Lanyi JK
    Biochemistry; 1998 Feb; 37(8):2496-506. PubMed ID: 9485398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspartic acid 85 in bacteriorhodopsin functions both as proton acceptor and negative counterion to the Schiff base.
    Subramaniam S; Greenhalgh DA; Khorana HG
    J Biol Chem; 1992 Dec; 267(36):25730-3. PubMed ID: 1464589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics study of the proton pump cycle of bacteriorhodopsin.
    Zhou F; Windemuth A; Schulten K
    Biochemistry; 1993 Mar; 32(9):2291-306. PubMed ID: 8443172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton translocation mechanism and energetics in the light-driven pump bacteriorhodopsin.
    Lanyi JK
    Biochim Biophys Acta; 1993 Dec; 1183(2):241-61. PubMed ID: 8268193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of proton and chloride transfer pathways in recombinant bacteriorhodopsin with chloride transport activity: implications for the chloride translocation mechanism.
    Brown LS; Needleman R; Lanyi JK
    Biochemistry; 1996 Dec; 35(50):16048-54. PubMed ID: 8973174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.