BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 7918458)

  • 1. Molecular dynamics studies on peroxidases: a structural model for horseradish peroxidase and a substrate adduct.
    Banci L; Carloni P; Savellini GG
    Biochemistry; 1994 Oct; 33(41):12356-66. PubMed ID: 7918458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential activity and structure of highly similar peroxidases. Spectroscopic, crystallographic, and enzymatic analyses of lignifying Arabidopsis thaliana peroxidase A2 and horseradish peroxidase A2.
    Nielsen KL; Indiani C; Henriksen A; Feis A; Becucci M; Gajhede M; Smulevich G; Welinder KG
    Biochemistry; 2001 Sep; 40(37):11013-21. PubMed ID: 11551197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the fungal peroxidase from Arthromyces ramosus at 1.9 A resolution. Structural comparisons with the lignin and cytochrome c peroxidases.
    Kunishima N; Fukuyama K; Matsubara H; Hatanaka H; Shibano Y; Amachi T
    J Mol Biol; 1994 Jan; 235(1):331-44. PubMed ID: 8289254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The crystal structure of lignin peroxidase at 1.70 A resolution reveals a hydroxy group on the cbeta of tryptophan 171: a novel radical site formed during the redox cycle.
    Choinowski T; Blodig W; Winterhalter KH; Piontek K
    J Mol Biol; 1999 Feb; 286(3):809-27. PubMed ID: 10024453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refinement of 3D models of horseradish peroxidase isoenzyme C: predictions of 2D NMR assignments and substrate binding sites.
    Zhao D; Gilfoyle DJ; Smith AT; Loew GH
    Proteins; 1996 Oct; 26(2):204-16. PubMed ID: 8916228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homology modeling of a heme protein, lignin peroxidase, from the crystal structure of cytochrome c peroxidase.
    Du P; Collins JR; Loew GH
    Protein Eng; 1992 Oct; 5(7):679-91. PubMed ID: 1336201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural interactions between horseradish peroxidase C and the substrate benzhydroxamic acid determined by X-ray crystallography.
    Henriksen A; Schuller DJ; Meno K; Welinder KG; Smith AT; Gajhede M
    Biochemistry; 1998 Jun; 37(22):8054-60. PubMed ID: 9609699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR study of the active site of resting state and cyanide-inhibited lignin peroxidase from Phanerochaete chrysosporium. Comparison with horseradish peroxidase.
    de Ropp JS; La Mar GN; Wariishi H; Gold MH
    J Biol Chem; 1991 Aug; 266(23):15001-8. PubMed ID: 1869537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutation of distal residues of horseradish peroxidase: influence on substrate binding and cavity properties.
    Howes BD; Rodriguez-Lopez JN; Smith AT; Smulevich G
    Biochemistry; 1997 Feb; 36(6):1532-43. PubMed ID: 9063902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabidopsis thaliana peroxidase N: structure of a novel neutral peroxidase.
    Mirza O; Henriksen A; Ostergaard L; Welinder KG; Gajhede M
    Acta Crystallogr D Biol Crystallogr; 2000 Mar; 56(Pt 3):372-5. PubMed ID: 10713531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling of the lignin peroxidase LIII of Phlebia radiata: use of a sequence template generated from a 3-D structure.
    Hoffrén AM; Saloheimo M; Thomas P; Overington JP; Johnson MS; Knowles JK; Blundell TL
    Protein Eng; 1993 Feb; 6(2):177-82. PubMed ID: 8386362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of protein environment on magnetic circular dichroism spectral properties of ferric and ferrous ligand complexes of yeast cytochrome c peroxidase.
    Pond AE; Sono M; Elenkova EA; Goodin DB; English AM; Dawson JH
    Biospectroscopy; 1999; 5(5 Suppl):S42-52. PubMed ID: 10512537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mediated electrochemistry of peroxidases--effects of variations in protein and mediator structures.
    Sadeghi SJ; Gilardi G; Cass AE
    Biosens Bioelectron; 1997 Dec; 12(12):1191-8. PubMed ID: 9474768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallographic refinement of lignin peroxidase at 2 A.
    Poulos TL; Edwards SL; Wariishi H; Gold MH
    J Biol Chem; 1993 Feb; 268(6):4429-40. PubMed ID: 8440725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant peroxidases. Their primary, secondary and tertiary structures, and relation to cytochrome c peroxidase.
    Welinder KG
    Eur J Biochem; 1985 Sep; 151(3):497-504. PubMed ID: 2992968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of horseradish, lignin, and manganese peroxidases to their respective substrates.
    Banci L; Bertini I; Bini T; Tien M; Turano P
    Biochemistry; 1993 Jun; 32(22):5825-31. PubMed ID: 8504102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution characterisation by NMR spectroscopy of two horseradish peroxidase isoenzyme C mutants with alanine replacing either Phe142 or Phe143.
    Veitch NC; Williams RJ; Bone NM; Burke JF; Smith AT
    Eur J Biochem; 1995 Oct; 233(2):650-8. PubMed ID: 7588812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The functional role of the key residues in the active site of peroxidases.
    Smulevich G
    Biochem Soc Trans; 1995 May; 23(2):240-4. PubMed ID: 7672260
    [No Abstract]   [Full Text] [Related]  

  • 19. Interaction of indole-3-acetic acid with horseradish peroxidase as a potential anticancer agent: from docking to molecular dynamics simulation.
    Zarei M; Rahbar MR; Negahdaripour M
    J Biomol Struct Dyn; 2022 Jun; 40(9):4188-4196. PubMed ID: 33280524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant peroxidases: substrate complexes with mechanistic implications.
    Gajhede M
    Biochem Soc Trans; 2001 May; 29(Pt 2):91-98. PubMed ID: 11356134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.