BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 7918471)

  • 21. Lysine modification of LDL or lipoprotein(a) by 4-hydroxynonenal or malondialdehyde decreases platelet serotonin secretion without affecting platelet aggregability and eicosanoid formation.
    Malle E; Ibovnik A; Leis HJ; Kostner GM; Verhallen PF; Sattler W
    Arterioscler Thromb Vasc Biol; 1995 Mar; 15(3):377-84. PubMed ID: 7749848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A method for detection of 4-hydroxy-2-nonenal adducts in proteins.
    Wakita C; Honda K; Shibata T; Akagawa M; Uchida K
    Free Radic Biol Med; 2011 Jul; 51(1):1-4. PubMed ID: 21457776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Different apolipoprotein B breakdown patterns in models of oxidized low density lipoprotein.
    Viita H; Närvänen O; Ylä-Herttuala S
    Life Sci; 1999; 65(8):783-93. PubMed ID: 10466744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydroxynonenal inactivates cathepsin B by forming Michael adducts with active site residues.
    Crabb JW; O'Neil J; Miyagi M; West K; Hoff HF
    Protein Sci; 2002 Apr; 11(4):831-40. PubMed ID: 11910026
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and functional changes in LDL after modification with both 4-hydroxynonenal and malondialdehyde.
    Hoff HF; O'Neil J
    J Lipid Res; 1993 Jul; 34(7):1209-17. PubMed ID: 8371068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. HNE-derived 2-pentylpyrroles are generated during oxidation of LDL, are more prevalent in blood plasma from patients with renal disease or atherosclerosis, and are present in atherosclerotic plaques.
    Salomon RG; Kaur K; Podrez E; Hoff HF; Krushinsky AV; Sayre LM
    Chem Res Toxicol; 2000 Jul; 13(7):557-64. PubMed ID: 10898587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigating the role of H₂S in 4-HNE scavenging.
    Laggner H; Gmeiner BM
    Methods Enzymol; 2015; 555():3-18. PubMed ID: 25747472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative analysis of acrolein-specific adducts generated during lipid peroxidation-modification of proteins in vitro: identification of N(τ)-(3-propanal)histidine as the major adduct.
    Maeshima T; Honda K; Chikazawa M; Shibata T; Kawai Y; Akagawa M; Uchida K
    Chem Res Toxicol; 2012 Jul; 25(7):1384-92. PubMed ID: 22716039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glycation and glycoxidation of low-density lipoproteins by glucose and low-molecular mass aldehydes. Formation of modified and oxidized particles.
    Knott HM; Brown BE; Davies MJ; Dean RT
    Eur J Biochem; 2003 Sep; 270(17):3572-82. PubMed ID: 12919321
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prooxidant-initiated lipid peroxidation in isolated rat hepatocytes: detection of 4-hydroxynonenal- and malondialdehyde-protein adducts.
    Hartley DP; Kroll DJ; Petersen DR
    Chem Res Toxicol; 1997 Aug; 10(8):895-905. PubMed ID: 9282839
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Involvement of aldose reductase in the metabolism of atherogenic aldehydes.
    Srivastava S; Liu SQ; Conklin DJ; Zacarias A; Srivastava SK; Bhatnagar A
    Chem Biol Interact; 2001 Jan; 130-132(1-3):563-71. PubMed ID: 11306075
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase. A possible involvement of intra- and intermolecular cross-linking reaction.
    Uchida K; Stadtman ER
    J Biol Chem; 1993 Mar; 268(9):6388-93. PubMed ID: 8454610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combined proteomic approaches for the identification of specific amino acid residues modified by 4-hydroxy-2-nonenal under physiological conditions.
    Mendez D; Hernaez ML; Diez A; Puyet A; Bautista JM
    J Proteome Res; 2010 Nov; 9(11):5770-81. PubMed ID: 20818828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein adducts generated from products of lipid oxidation: focus on HNE and one.
    Sayre LM; Lin D; Yuan Q; Zhu X; Tang X
    Drug Metab Rev; 2006; 38(4):651-75. PubMed ID: 17145694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immunostaining of human autopsy aortas with antibodies to modified apolipoprotein B and apoprotein(a).
    Jürgens G; Chen Q; Esterbauer H; Mair S; Ledinski G; Dinges HP
    Arterioscler Thromb; 1993 Nov; 13(11):1689-99. PubMed ID: 7692957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational and physicochemical insight into 4-hydroxy-2-nonenal induced structural and functional perturbations in human low-density lipoprotein.
    Tufail N; Abidi M; Warsi MS; Kausar T; Nayeem SM;
    J Biomol Struct Dyn; 2024 Mar; 42(5):2698-2713. PubMed ID: 37154523
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A critical assessment of the effects of aminoguanidine and ascorbate on the oxidative modification of LDL: evidence for interference with some assays of lipoprotein oxidation by aminoguanidine.
    Scaccini C; Chiesa G; Jialal I
    J Lipid Res; 1994 Jun; 35(6):1085-92. PubMed ID: 8077847
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measurement of HNE-protein adducts in human plasma and serum by ELISA-Comparison of two primary antibodies.
    Weber D; Milkovic L; Bennett SJ; Griffiths HR; Zarkovic N; Grune T
    Redox Biol; 2013; 1(1):226-33. PubMed ID: 24024156
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein-bound 4-hydroxy-2-hexenal as a marker of oxidized n-3 polyunsaturated fatty acids.
    Yamada S; Funada T; Shibata N; Kobayashi M; Kawai Y; Tatsuda E; Furuhata A; Uchida K
    J Lipid Res; 2004 Apr; 45(4):626-34. PubMed ID: 14729859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunochemical detection of carboxymethylated Apo B-100 in copper-oxidized LDL.
    Kato Y; Tokunaga K; Osawa T
    Biochem Biophys Res Commun; 1996 Sep; 226(3):923-7. PubMed ID: 8831712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.