BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 7918597)

  • 1. Superoxide generation by lipoxygenase in the presence of NADH and NADPH.
    Roy P; Roy SK; Mitra A; Kulkarni AP
    Biochim Biophys Acta; 1994 Sep; 1214(2):171-9. PubMed ID: 7918597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipoxygenase-mediated glutathione oxidation and superoxide generation.
    Roy P; Sajan MP; Kulkarni AP
    J Biochem Toxicol; 1995 Apr; 10(2):111-20. PubMed ID: 7562953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PGH synthase and lipoxygenase generate superoxide in the presence of NADH or NADPH.
    Kukreja RC; Kontos HA; Hess ML; Ellis EF
    Circ Res; 1986 Dec; 59(6):612-9. PubMed ID: 3028671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-oxidation of NADH and NADPH by a mammalian 15-lipoxygenase: inhibition of lipoxygenase activity at near-physiological NADH concentrations.
    O'donnell VB; Kühn H
    Biochem J; 1997 Oct; 327 ( Pt 1)(Pt 1):203-8. PubMed ID: 9355754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High rates of extracellular superoxide generation by cultured human fibroblasts: involvement of a lipid-metabolizing enzyme.
    O'Donnell VB; Azzi A
    Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):805-12. PubMed ID: 8836123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1-Hydroxyethyl radical formation during NADPH- and NADH-dependent oxidation of ethanol by human liver microsomes.
    Rao DN; Yang MX; Lasker JM; Cederbaum AI
    Mol Pharmacol; 1996 May; 49(5):814-21. PubMed ID: 8622631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initiation of a superoxide-dependent chain oxidation of lactate dehydrogenase-bound NADH by oxidants of low and high reactivity.
    Petrat F; Bramey T; Kirsch M; De Groot H
    Free Radic Res; 2005 Oct; 39(10):1043-57. PubMed ID: 16298730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide-dependent and superoxide-independent pathways for reduction of nitroblue tetrazolium in isolated rat cardiac myocytes.
    Thayer WS
    Arch Biochem Biophys; 1990 Jan; 276(1):139-45. PubMed ID: 1688694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superoxide generated by glutathione reductase initiates a vanadate-dependent free radical chain oxidation of NADH.
    Liochev SI; Fridovich I
    Arch Biochem Biophys; 1992 May; 294(2):403-6. PubMed ID: 1314540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NAD(P)H oxidation elicits anion superoxide formation in radish plasmalemma vesicles.
    Vianello A; Macrì F
    Biochim Biophys Acta; 1989 Apr; 980(2):202-8. PubMed ID: 2539193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for free radical generation due to NADH oxidation by aldehyde oxidase during ethanol metabolism.
    Mira L; Maia L; Barreira L; Manso CF
    Arch Biochem Biophys; 1995 Apr; 318(1):53-8. PubMed ID: 7726572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Source of superoxide anion radical in aerobic mixtures consisting of NAD[P]H, 5-methylphenazinium methyl sulfate and nitroblue tetrazolium chloride.
    Rao UM
    Free Radic Biol Med; 1989; 7(5):513-9. PubMed ID: 2558980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [NADH- and NADPH-dependent formation of superoxide radicals in liver nuclei].
    Vartanian LS; Gurevich SM
    Biokhimiia; 1989 Jun; 54(6):1020-5. PubMed ID: 2551393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of ascorbic acid by lipoxygenase: effect of selected chemicals.
    Roy P; Kulkarni AP
    Food Chem Toxicol; 1996 Jun; 34(6):563-70. PubMed ID: 8690317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of NADH-X on cytosolic glycerol-3-phosphate dehydrogenase.
    Prabhakar P; Laboy JI; Wang J; Budker T; Din ZZ; Chobanian M; Fahien LA
    Arch Biochem Biophys; 1998 Dec; 360(2):195-205. PubMed ID: 9851831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The vanadate-stimulated oxidation of NAD(P)H by biomembranes is a superoxide-initiated free radical chain reaction.
    Liochev S; Fridovich I
    Arch Biochem Biophys; 1986 Oct; 250(1):139-45. PubMed ID: 3021060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced oxidation of NAD(P)H by oxidants in the presence of dehydrogenases but no evidence for a superoxide-propagated chain oxidation of the bound coenzymes.
    Petrat F; Bramey T; Kirsch M; Kerkweg U; De Groot H
    Free Radic Res; 2006 Aug; 40(8):857-63. PubMed ID: 17015264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation.
    Takeshige K; Minakami S
    Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cofactor recycling in a coupled enzyme oxidation-reduction reaction: conversion of omega-oxo-fatty acids into omega-hydroxy and dicarboxylic acids.
    Nuñez A; Foglia TA; Piazza GJ
    Biotechnol Appl Biochem; 1999 Jun; 29(3):207-12. PubMed ID: 10334949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.