These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 7918802)

  • 1. A study and model of the role of the Renshaw cell in regulating the transient firing rate of the motoneuron.
    Shoemaker M; Hannaford B
    Biol Cybern; 1994; 71(3):251-62. PubMed ID: 7918802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decorrelating actions of Renshaw interneurons on the firing of spinal motoneurons within a motor nucleus: a simulation study.
    Maltenfort MG; Heckman CJ; Rymer WZ
    J Neurophysiol; 1998 Jul; 80(1):309-23. PubMed ID: 9658052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The recurrent case for the Renshaw cell.
    Bhumbra GS; Bannatyne BA; Watanabe M; Todd AJ; Maxwell DJ; Beato M
    J Neurosci; 2014 Sep; 34(38):12919-32. PubMed ID: 25232126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evaluation of input-output models of motoneuron discharge.
    Powers RK; Binder MD
    J Neurophysiol; 1996 Jan; 75(1):367-79. PubMed ID: 8822564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation system of spinal cord motor nuclei and associated nerves and muscles, in a Web-based architecture.
    Cisi RR; Kohn AF
    J Comput Neurosci; 2008 Dec; 25(3):520-42. PubMed ID: 18506610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renshaw cells are inactive during motor inhibition elicited by the pontine microinjection of carbachol.
    Morales FR; Engelhardt JK; Pereda AE; Yamuy J; Chase MH
    Neurosci Lett; 1988 Apr; 86(3):289-95. PubMed ID: 3380320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A study on a model of the role of Renshaw cells in regulating motoneuron discharges].
    Romanov SP
    Fiziol Zh SSSR Im I M Sechenova; 1976 Apr; 62(4):528-36. PubMed ID: 1278529
    [No Abstract]   [Full Text] [Related]  

  • 8. Ia inhibitory interneurons and Renshaw cells as contributors to the spinal mechanisms of fictive locomotion.
    Pratt CA; Jordan LM
    J Neurophysiol; 1987 Jan; 57(1):56-71. PubMed ID: 3559681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renshaw cells and recurrent inhibition: comparison of responses to cyclic inputs.
    Windhorst U; Boorman G; Kirmayer D
    Neuroscience; 1995 Jul; 67(1):225-33. PubMed ID: 7477902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Input-output relations in the pathway of recurrent inhibition to motoneurones in the cat.
    Hultborn H; Pierrot-Deseilligny E
    J Physiol; 1979 Dec; 297(0):267-87. PubMed ID: 231651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Central drive on Renshaw cells coupled with phrenic motoneurons.
    Hilaire G; Khatib M; Monteau R
    Brain Res; 1986 Jun; 376(1):133-9. PubMed ID: 3719363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of oligosynaptic group I input to the cat medial gastrocnemius motoneuron pool.
    Powers RK; Binder MD
    J Neurophysiol; 1985 Feb; 53(2):497-517. PubMed ID: 2984351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency response of spinal Renshaw cells activated by stochastic motor axon stimulation.
    Christakos CN; Windhorst U; Rissing R; Meyer-Lohmann J
    Neuroscience; 1987 Nov; 23(2):613-23. PubMed ID: 3437982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of the localization of dendritic calcium persistent inward current on the input-output properties of spinal motoneuron pool: a computational study.
    Kim H
    J Appl Physiol (1985); 2017 Nov; 123(5):1166-1187. PubMed ID: 28684585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Principles of interneuron development learned from Renshaw cells and the motoneuron recurrent inhibitory circuit.
    Alvarez FJ; Benito-Gonzalez A; Siembab VC
    Ann N Y Acad Sci; 2013 Mar; 1279():22-31. PubMed ID: 23530999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of type-identified motor units during centrally evoked contractions in the cat medial gastrocnemius muscle. II. Motoneuron firing-rate modulation.
    Tansey KE; Botterman BR
    J Neurophysiol; 1996 Jan; 75(1):38-50. PubMed ID: 8822540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective synaptic current and motoneuron firing rate modulation.
    Powers RK; Binder MD
    J Neurophysiol; 1995 Aug; 74(2):793-801. PubMed ID: 7472383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between simulated common synaptic input and discharge synchrony in cat spinal motoneurons.
    Binder MD; Powers RK
    J Neurophysiol; 2001 Nov; 86(5):2266-75. PubMed ID: 11698517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waveform parameters of recurrent inhibitory postsynaptic potentials in cat motoneurons during time-varying activation patterns.
    Boorman G; Windhorst U; Kirmayer D
    Neuroscience; 1994 Dec; 63(3):747-56. PubMed ID: 7898674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial distribution of recurrent inhibitory synapses on spinal motoneurons in the cat.
    Fyffe RE
    J Neurophysiol; 1991 May; 65(5):1134-49. PubMed ID: 1869909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.