BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 7918860)

  • 1. Tetracycline fluorescence incident photometry: a new technique to quantitate bone formation.
    Burstein FD; Ariyan S
    J Craniofac Surg; 1994 May; 5(2):77-80. PubMed ID: 7918860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of periosteal preservation on osteogenesis in a canine rib autograft model: tetracycline fluorescence incident photometry.
    Burstein FD; Ariyan S; Chicarilli Z; Canalis RF
    J Craniofac Surg; 1994 Jul; 5(3):161-71. PubMed ID: 7803588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetracycline bone labeling: an improved technique using incident fluorescence.
    Canalis RF; Lechago J
    Ann Otol Rhinol Laryngol; 1982; 91(2 Pt 1):160-2. PubMed ID: 7044249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. APPOSITIONAL BONE FORMATION IN CANINE BONE: A QUANTITATIVE MICROSCOPIC STUDY USING TETRACYCLINE MARKERS.
    LEE WR
    J Anat; 1964 Oct; 98(Pt 4):665-77. PubMed ID: 14229997
    [No Abstract]   [Full Text] [Related]  

  • 5. CALCIUM ACCRETION AND BONE FORMATION IN DOGS: AN EXPERIMENTAL COMPARISON BETWEEN THE RESULTS OF CA-45 KINETIC ANALYSIS AND TETRACYCLINE LABELLING.
    LEE WR; MARSHALL JH; SISSONS HA
    J Bone Joint Surg Br; 1965 Feb; 47():157-80. PubMed ID: 14296239
    [No Abstract]   [Full Text] [Related]  

  • 6. Estimation of the rate of osteogenesis by tetracycline double labeling in intertrochanteric fractures of the femur in different age groups and its correlation with radiological grading of osteoporosis.
    Singh S; Jain AK; Arora A; Khanna J; Bhargava SK; Kumar S
    J Orthop Sci; 2002; 7(2):226-31. PubMed ID: 11956983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The in vivo distribution of tetracyclines in canine bone.
    HARRIS WH; JACKSON RH; JOWSEY J
    J Bone Joint Surg Am; 1962 Oct; 44-A():1308-20. PubMed ID: 19777627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for the assessment of osteoneogenesis in experimental bone grafts.
    Canalis RF
    Arch Otolaryngol; 1981 Aug; 107(8):482-3. PubMed ID: 7018474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel tetracycline labeling schedule for longitudinal evaluation of the short-term effects of anabolic therapy with a single iliac crest bone biopsy: early actions of teriparatide.
    Lindsay R; Cosman F; Zhou H; Bostrom MP; Shen VW; Cruz JD; Nieves JW; Dempster DW
    J Bone Miner Res; 2006 Mar; 21(3):366-73. PubMed ID: 16491283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A COMPARISON OF DIFFERENT MORPHOLOGIC METHODS OF DETERMINING BONE FORMATION.
    KELLY PJ; JOWSEY J; RIGGS BL
    Clin Orthop Relat Res; 1965; 40():7-11. PubMed ID: 14304714
    [No Abstract]   [Full Text] [Related]  

  • 11. The label escape error: determination of the active bone-forming surface in histologic sections of bone measured by tetracycline double labels.
    Schwartz MP; Recker RR
    Metab Bone Dis Relat Res; 1982; 4(4):237-41. PubMed ID: 7182723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TETRACYCLINE: EFFECT ON OSTEOGENESIS IN VITRO.
    SAXEN L
    Science; 1965 Aug; 149(3686):870-2. PubMed ID: 14332849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetracycline (achromycin) labeling of bone: an attempt at quantitative measurement of new bone formation.
    Mann RA; Thaxter T
    J Am Geriatr Soc; 1966 Dec; 14(12):1221-31. PubMed ID: 5954531
    [No Abstract]   [Full Text] [Related]  

  • 14. Reorganization of fresh and preserved bone transplants. An experimental study in rabbits using tetracycline labelling.
    Puranen J
    Acta Orthop Scand; 1966; ():Suppl 92:1-75. PubMed ID: 5335621
    [No Abstract]   [Full Text] [Related]  

  • 15. Visual and fluorometric lateral flow immunoassay combined with a dual-functional test mode for rapid determination of tetracycline antibiotics.
    Sheng W; Chang Q; Shi Y; Duan W; Zhang Y; Wang S
    Mikrochim Acta; 2018 Aug; 185(9):404. PubMed ID: 30088104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of calcified bone matrix on the osteogenic potential of hematopoietic marrow.
    Newman MG; Boyne PJ
    Oral Surg Oral Med Oral Pathol; 1971 Sep; 32(3):506-12. PubMed ID: 4105589
    [No Abstract]   [Full Text] [Related]  

  • 17. Dynamic Analysis of New Bone Obtained by Nonvascular Transport Distraction Osteogenesis in Canines.
    Guo P; Zhou N; Lu X; Huang XP; Jiang XF; Wang Y
    J Oral Maxillofac Surg; 2016 Jan; 74(1):151-61. PubMed ID: 26044605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone formation in osteoporosis. Appositional rate measured by tetracycline labeling.
    Wu K; Frost HM
    Arch Pathol; 1969 Nov; 88(5):508-10. PubMed ID: 5347140
    [No Abstract]   [Full Text] [Related]  

  • 19. Appositional bone formation rates in the Beagle.
    Anderson C; Danylchuk KD
    Am J Vet Res; 1979 Jul; 40(7):907-10. PubMed ID: 507493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [USE OF TETRACYCLINE ANTIBIOTICS IN THE INVESTIGATION OF VARIOUS PATHOPHYSIOLOGICAL PROCESSES IN BONY TISSUE].
    SURIN V; KOLC J
    Rozhl Chir; 1965 May; 44():315-20. PubMed ID: 14344057
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.