These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 7919001)

  • 1. Time-resolved fluorescence studies of dityrosine in the outer layer of intact yeast ascospores.
    Kungl AJ; Visser AJ; Kauffmann HF; Breitenbach M
    Biophys J; 1994 Jul; 67(1):309-17. PubMed ID: 7919001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N,N'-Bisformyl dityrosine is an in vivo precursor of the yeast ascospore wall.
    Briza P; Kalchhauser H; Pittenauer E; Allmaier G; Breitenbach M
    Eur J Biochem; 1996 Jul; 239(1):124-31. PubMed ID: 8706696
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Bemena LD; Mukama O; Neiman AM; Li Z; Gao XD; Nakanishi H
    J Biol Chem; 2017 Sep; 292(38):15880-15891. PubMed ID: 28794156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of two developmentally regulated genes involved in spore wall maturation in Saccharomyces cerevisiae.
    Briza P; Breitenbach M; Ellinger A; Segall J
    Genes Dev; 1990 Oct; 4(10):1775-89. PubMed ID: 2249774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a yeast sporulation-specific P450 family protein, Dit2, using an in vitro assay to crosslink formyl tyrosine.
    Bemena LD; Mukama O; Wang N; Gao XD; Nakanishi H
    J Biochem; 2018 Feb; 163(2):123-131. PubMed ID: 29365103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sporulation-specific enzymes encoded by the DIT1 and DIT2 genes catalyze a two-step reaction leading to a soluble LL-dityrosine-containing precursor of the yeast spore wall.
    Briza P; Eckerstorfer M; Breitenbach M
    Proc Natl Acad Sci U S A; 1994 May; 91(10):4524-8. PubMed ID: 8183942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dityrosine is a prominent component of the yeast ascospore wall. A proof of its structure.
    Briza P; Winkler G; Kalchhauser H; Breitenbach M
    J Biol Chem; 1986 Mar; 261(9):4288-94. PubMed ID: 3512567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dtrlp, a multidrug resistance transporter of the major facilitator superfamily, plays an essential role in spore wall maturation in Saccharomyces cerevisiae.
    Felder T; Bogengruber E; Tenreiro S; Ellinger A; Sá-Correia I; Briza P
    Eukaryot Cell; 2002 Oct; 1(5):799-810. PubMed ID: 12455697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a DL-dityrosine-containing macromolecule from yeast ascospore walls.
    Briza P; Ellinger A; Winkler G; Breitenbach M
    J Biol Chem; 1990 Sep; 265(25):15118-23. PubMed ID: 2203769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A screen for spore wall permeability mutants identifies a secreted protease required for proper spore wall assembly.
    Suda Y; Rodriguez RK; Coluccio AE; Neiman AM
    PLoS One; 2009 Sep; 4(9):e7184. PubMed ID: 19779569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulation of the rare amino acid LL-dityrosine and a dityrosine-containing peptide: comparison with time-resolved fluorescence.
    Kungl AJ; Breitenbach M; Kauffmann HF
    Biochim Biophys Acta; 1994 Dec; 1201(3):345-52. PubMed ID: 7803463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved fluorescence study of the single tryptophans of engineered skeletal muscle troponin C.
    She M; Dong WJ; Umeda PK; Cheung HC
    Biophys J; 1997 Aug; 73(2):1042-55. PubMed ID: 9251821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly redundant gene network controls assembly of the outer spore wall in S. cerevisiae.
    Lin CP; Kim C; Smith SO; Neiman AM
    PLoS Genet; 2013; 9(8):e1003700. PubMed ID: 23966878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interspore bridges: a new feature of the Saccharomyces cerevisiae spore wall.
    Coluccio A; Neiman AM
    Microbiology (Reading); 2004 Oct; 150(Pt 10):3189-96. PubMed ID: 15470099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic studies on human serum albumin and methemalbumin: optical, steady-state, and picosecond time-resolved fluorescence studies, and kinetics of substrate oxidation by methemalbumin.
    Kamal JK; Behere DV
    J Biol Inorg Chem; 2002 Mar; 7(3):273-83. PubMed ID: 11935351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarity of lipid bilayers. A fluorescence investigation.
    Pérochon E; Lopez A; Tocanne JF
    Biochemistry; 1992 Aug; 31(33):7672-82. PubMed ID: 1510953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins.
    Volkmer A; Subramaniam V; Birch DJ; Jovin TM
    Biophys J; 2000 Mar; 78(3):1589-98. PubMed ID: 10692343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applied usage of yeast spores as chitosan beads.
    Zhang H; Tachikawa H; Gao XD; Nakanishi H
    Appl Environ Microbiol; 2014 Aug; 80(16):5098-105. PubMed ID: 24907339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Candida albicans cell walls contain the fluorescent cross-linking amino acid dityrosine.
    Smail EH; Briza P; Panagos A; Berenfeld L
    Infect Immun; 1995 Oct; 63(10):4078-83. PubMed ID: 7558322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical composition of the yeast ascospore wall. The second outer layer consists of chitosan.
    Briza P; Ellinger A; Winkler G; Breitenbach M
    J Biol Chem; 1988 Aug; 263(23):11569-74. PubMed ID: 3042773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.