These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Isolation of two developmentally regulated genes involved in spore wall maturation in Saccharomyces cerevisiae. Briza P; Breitenbach M; Ellinger A; Segall J Genes Dev; 1990 Oct; 4(10):1775-89. PubMed ID: 2249774 [TBL] [Abstract][Full Text] [Related]
5. Characterization of a yeast sporulation-specific P450 family protein, Dit2, using an in vitro assay to crosslink formyl tyrosine. Bemena LD; Mukama O; Wang N; Gao XD; Nakanishi H J Biochem; 2018 Feb; 163(2):123-131. PubMed ID: 29365103 [TBL] [Abstract][Full Text] [Related]
6. The sporulation-specific enzymes encoded by the DIT1 and DIT2 genes catalyze a two-step reaction leading to a soluble LL-dityrosine-containing precursor of the yeast spore wall. Briza P; Eckerstorfer M; Breitenbach M Proc Natl Acad Sci U S A; 1994 May; 91(10):4524-8. PubMed ID: 8183942 [TBL] [Abstract][Full Text] [Related]
7. Dityrosine is a prominent component of the yeast ascospore wall. A proof of its structure. Briza P; Winkler G; Kalchhauser H; Breitenbach M J Biol Chem; 1986 Mar; 261(9):4288-94. PubMed ID: 3512567 [TBL] [Abstract][Full Text] [Related]
8. Dtrlp, a multidrug resistance transporter of the major facilitator superfamily, plays an essential role in spore wall maturation in Saccharomyces cerevisiae. Felder T; Bogengruber E; Tenreiro S; Ellinger A; Sá-Correia I; Briza P Eukaryot Cell; 2002 Oct; 1(5):799-810. PubMed ID: 12455697 [TBL] [Abstract][Full Text] [Related]
9. Characterization of a DL-dityrosine-containing macromolecule from yeast ascospore walls. Briza P; Ellinger A; Winkler G; Breitenbach M J Biol Chem; 1990 Sep; 265(25):15118-23. PubMed ID: 2203769 [TBL] [Abstract][Full Text] [Related]
10. A screen for spore wall permeability mutants identifies a secreted protease required for proper spore wall assembly. Suda Y; Rodriguez RK; Coluccio AE; Neiman AM PLoS One; 2009 Sep; 4(9):e7184. PubMed ID: 19779569 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics simulation of the rare amino acid LL-dityrosine and a dityrosine-containing peptide: comparison with time-resolved fluorescence. Kungl AJ; Breitenbach M; Kauffmann HF Biochim Biophys Acta; 1994 Dec; 1201(3):345-52. PubMed ID: 7803463 [TBL] [Abstract][Full Text] [Related]
12. Time-resolved fluorescence study of the single tryptophans of engineered skeletal muscle troponin C. She M; Dong WJ; Umeda PK; Cheung HC Biophys J; 1997 Aug; 73(2):1042-55. PubMed ID: 9251821 [TBL] [Abstract][Full Text] [Related]
13. A highly redundant gene network controls assembly of the outer spore wall in S. cerevisiae. Lin CP; Kim C; Smith SO; Neiman AM PLoS Genet; 2013; 9(8):e1003700. PubMed ID: 23966878 [TBL] [Abstract][Full Text] [Related]
14. Interspore bridges: a new feature of the Saccharomyces cerevisiae spore wall. Coluccio A; Neiman AM Microbiology (Reading); 2004 Oct; 150(Pt 10):3189-96. PubMed ID: 15470099 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopic studies on human serum albumin and methemalbumin: optical, steady-state, and picosecond time-resolved fluorescence studies, and kinetics of substrate oxidation by methemalbumin. Kamal JK; Behere DV J Biol Inorg Chem; 2002 Mar; 7(3):273-83. PubMed ID: 11935351 [TBL] [Abstract][Full Text] [Related]