These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7919598)

  • 1. Haematocrit measurements during cardiopulmonary bypass surgery: comparison of three stat methods with a blood cell counter.
    al-Odeh A; Varga ZA; Angelin GD
    Perfusion; 1994 Mar; 9(2):127-34. PubMed ID: 7919598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The i-STAT analyzer. A new, hand-held device for the bedside determination of hematocrit, blood gases, and electrolytes].
    Schneider J; Dudziak R; Westphal K; Vettermann J
    Anaesthesist; 1997 Aug; 46(8):704-14. PubMed ID: 9382209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliability of point-of-care hematocrit, blood gas, electrolyte, lactate and glucose measurement during cardiopulmonary bypass.
    Steinfelder-Visscher J; Weerwind PW; Teerenstra S; Brouwer MH
    Perfusion; 2006 Jan; 21(1):33-7. PubMed ID: 16485697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evaluation of the Spuncrit infra-red analyser for measurement of haematocrit.
    Weatherall MS; Sherry KM
    Clin Lab Haematol; 1997 Sep; 19(3):183-6. PubMed ID: 9352142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical comparisons of continuous venous oxygen saturation and hematocrit monitors in pediatric surgery.
    Bennett D; Burnside J; Langwell J; Beckley PD
    J Extra Corpor Technol; 1993; 25(4):140-4. PubMed ID: 10172011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous arterial and venous blood gas monitoring during cardiopulmonary bypass.
    Mark JB; FitzGerald D; Fenton T; Fosberg AM; Camann W; Maffeo N; Winkelman J
    J Thorac Cardiovasc Surg; 1991 Sep; 102(3):431-9. PubMed ID: 1908928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical evaluation of a novel technology for non-invasive and continuous measurement of plasma haemoglobin concentration.
    Broderick AJ; Desmond F; Leen G; Shorten G
    Anaesthesia; 2015 Oct; 70(10):1165-70. PubMed ID: 26074070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an instrument to indirectly monitor arterial pCO2 during cardiopulmonary bypass.
    Høgetveit JO; Kristiansen F; Pedersen TH
    Perfusion; 2006 Jan; 21(1):13-9. PubMed ID: 16485694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The association of hemodilution and transfusion of red blood cells with biochemical markers of splanchnic and renal injury during cardiopulmonary bypass.
    Huybregts RA; de Vroege R; Jansen EK; van Schijndel AW; Christiaans HM; van Oeveren W
    Anesth Analg; 2009 Aug; 109(2):331-9. PubMed ID: 19608799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical evaluation of the new BMU 40 in-line blood analysis monitor.
    Schaarschmidt J; Seeburger J; Borger MA; Grosse FO; Kraemer K; Mohr FW
    Perfusion; 2009 Jul; 24(4):277-86. PubMed ID: 19880664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in cerebral oxygenation during cold (28 degrees C) and warm (34 degrees C) cardiopulmonary bypass using different blood gas strategies (alpha-stat and pH-stat) in patients undergoing coronary artery bypass graft surgery.
    Ali MS; Harmer M; Vaughan RS; Dunne JA; Latto IP; Haaverstad R; Kulatilake EN; Butchart EG
    Acta Anaesthesiol Scand; 2004 Aug; 48(7):837-44. PubMed ID: 15242427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous Metabolic Monitoring in Infant Cardiac Surgery: Toward an Individualized Cardiopulmonary Bypass Strategy.
    Torre S; Biondani E; Menon T; Marchi D; Franzoi M; Ferrarini D; Tabbì R; Hoxha S; Barozzi L; Faggian G; Luciani GB
    Artif Organs; 2016 Jan; 40(1):65-72. PubMed ID: 26582421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical evaluation of the CDI System 400 blood gas monitor.
    Svenmarker S; Lindholm R; Häggmark S; Jansson E; Benze S
    Perfusion; 1994 Jan; 9(1):71-6. PubMed ID: 8161871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical evaluation of a new in-line continuous blood gas monitor.
    Southworth R; Sutton R; Mize S; Stammers AH; Fristoe LW; Cook D; Hostetler D; Richenbacher WE
    J Extra Corpor Technol; 1998 Dec; 30(4):166-70. PubMed ID: 10537576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between cerebral and mixed venous oxygen saturation during moderate versus tepid hypothermic hemodiluted cardiopulmonary bypass.
    Baraka A; Naufal M; El-Khatib M
    J Cardiothorac Vasc Anesth; 2006 Dec; 20(6):819-25. PubMed ID: 17138087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical evaluation of a new saturation/hematocrit monitor.
    Miller MF; Luckenbach J; Chen C
    J Extra Corpor Technol; 1992; 24(2):55-7. PubMed ID: 10171574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of STAT-CRIT hematocrit determination in comparison to Coulter and centrifuge: the effects of isotonic hemodilution and albumin administration.
    McNulty SE; Sharkey SJ; Asam B; Lee JH
    Anesth Analg; 1993 Apr; 76(4):830-4. PubMed ID: 8466026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro performance of a new non-invasive extracorporeal saturation monitor.
    Bailey DH; da Silva EJ; Clutton-Brock TH
    Anaesthesia; 2011 Oct; 66(10):889-94. PubMed ID: 21864298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical evaluation of the CDI-100 in-line hematocrit/saturation monitor.
    Walton HG; Boucher D; Linne D
    J Extra Corpor Technol; 1999 Jun; 31(2):80-3. PubMed ID: 10724647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodilutional anemia impairs neurologic outcome after cardiopulmonary bypass in a piglet model.
    Miura T; Sakamoto T; Kobayashi M; Shin'oka T; Kurosawa H
    J Thorac Cardiovasc Surg; 2007 Jan; 133(1):29-36. PubMed ID: 17198777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.