BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 7919600)

  • 1. Monitoring of CO2 exchange during cardiopulmonary bypass.
    Alston RP
    Perfusion; 1994 Mar; 9(2):141-2. PubMed ID: 7919600
    [No Abstract]   [Full Text] [Related]  

  • 2. Monitoring of CO2 exchange during cardiopulmonary bypass: the effect of oxygenator design on the applicability of capnometry.
    Aittomäki J
    Perfusion; 1993; 8(4):337-44. PubMed ID: 10171988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved sensor and a method for transcutaneous CO2 monitoring.
    Beran AV; Shigezawa GY; Yeung HN; Huxtable RF
    Acta Anaesthesiol Scand Suppl; 1978; 68():111-7. PubMed ID: 279192
    [No Abstract]   [Full Text] [Related]  

  • 4. Online CO2 monitoring during cardiopulmonary bypass using ETCO2 gas analysis during pH stat strategy of acid-base management.
    Saxena P; Bhan A; Sharma R; Saxena N
    Ann Thorac Surg; 2001 Dec; 72(6):2186-7. PubMed ID: 11789840
    [No Abstract]   [Full Text] [Related]  

  • 5. Clinical evaluation of an instrument to measure carbon dioxide tension at the oxygenator gas outlet in cardiopulmonary bypass.
    Kristiansen F; Høgetveit JO; Pedersen TH
    Perfusion; 2006 Jan; 21(1):21-6. PubMed ID: 16485695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygenator exhaust capnography: a method of estimating arterial carbon dioxide tension during cardiopulmonary bypass.
    Zia M; Davies FW; Alston RP; Anaes FC
    J Cardiothorac Vasc Anesth; 1992 Feb; 6(1):42-5. PubMed ID: 1543852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO2 monitoring during cardiopulmonary bypass.
    Jaffe TB; Bernhart J
    Anesthesiology; 1982 Jun; 56(6):485. PubMed ID: 6805366
    [No Abstract]   [Full Text] [Related]  

  • 8. Carbon dioxide field flooding techniques for open heart surgery: monitoring and minimizing potential adverse effects.
    Nadolny EM; Svensson LG
    Perfusion; 2000 Mar; 15(2):151-3. PubMed ID: 10789570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of temperature correction of blood gas values on the accuracy of end-tidal carbon dioxide monitoring in children after cardiac surgery.
    Suominen PK; Stayer S; Wang W; Chang AC
    ASAIO J; 2007; 53(6):670-4. PubMed ID: 18043144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increases in arterial to end-tidal CO2 tension differences after cardiopulmonary bypass.
    Bermudez J; Lichtiger M
    Anesth Analg; 1987 Jul; 66(7):690-2. PubMed ID: 3111303
    [No Abstract]   [Full Text] [Related]  

  • 11. [Development of a novel artificial heart-lung system for long-term cardiopulmonary support--experimental evaluation in goats with total cardiopulmonary bypass].
    Eya K
    Hokkaido Igaku Zasshi; 1999 Sep; 74(5):395-404. PubMed ID: 10495854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an instrument to indirectly monitor arterial pCO2 during cardiopulmonary bypass.
    Høgetveit JO; Kristiansen F; Pedersen TH
    Perfusion; 2006 Jan; 21(1):13-9. PubMed ID: 16485694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical evaluation of the on-line Sensicath blood gas monitoring system.
    Myklejord DJ; Pritzker MR; Nicoloff DM; Emery AM; Emery RW
    Heart Surg Forum; 1998; 1(1):60-4. PubMed ID: 11276442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic model of gas exchanges during cardiopulmonary bypass.
    Commin PL; Stucker O; Duvelleroy M
    Life Support Syst; 1986; 4 Suppl 1():23-35. PubMed ID: 3091957
    [No Abstract]   [Full Text] [Related]  

  • 15. [Minimal flow anesthesia and intraoperative gas monitoring].
    Feiereis HW
    Anasthesiol Intensivmed Notfallmed Schmerzther; 1998 Feb; 33 Suppl 1():S27-9. PubMed ID: 9530472
    [No Abstract]   [Full Text] [Related]  

  • 16. Carbon dioxide removal by a hemodialyzer with the dialysate channel coupled to the bubble oxygenator.
    Zborowski M; Kmiotek W; Sliwinska J; Ciszecki J; Werynski A
    Artif Organs; 1983 Nov; 7(4):481-4. PubMed ID: 6418121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic metabolism during cardiopulmonary bypass: predictive value of carbon dioxide derived parameters.
    Ranucci M; Isgrò G; Romitti F; Mele S; Biagioli B; Giomarelli P
    Ann Thorac Surg; 2006 Jun; 81(6):2189-95. PubMed ID: 16731152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independent control of blood gas PO2 and PCO2 in a bubble oxygenator.
    Sutherland KM; Pearson DT; Gordon LS
    Clin Phys Physiol Meas; 1988 May; 9(2):97-105. PubMed ID: 3134153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcutaneous monitoring of partial pressure of carbon dioxide in the elderly patient: a prospective, clinical comparison with end-tidal monitoring.
    Casati A; Squicciarini G; Malagutti G; Baciarello M; Putzu M; Fanelli A
    J Clin Anesth; 2006 Sep; 18(6):436-40. PubMed ID: 16980160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benefits of Continuous Monitoring of PCO2 Obtained from a System Applied to Membrane Oxygenator Exhaustion of the Cardiopulmonary Bypass Circuit.
    Filho VADR; Oliveira EL; Scramim JF; Sanga MA; Santos MAD
    Rev Port Cir Cardiotorac Vasc; 2019; 26(3):205-208. PubMed ID: 31734972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.