These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 7919600)

  • 1. Monitoring of CO2 exchange during cardiopulmonary bypass.
    Alston RP
    Perfusion; 1994 Mar; 9(2):141-2. PubMed ID: 7919600
    [No Abstract]   [Full Text] [Related]  

  • 2. Monitoring of CO2 exchange during cardiopulmonary bypass: the effect of oxygenator design on the applicability of capnometry.
    Aittomäki J
    Perfusion; 1993; 8(4):337-44. PubMed ID: 10171988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved sensor and a method for transcutaneous CO2 monitoring.
    Beran AV; Shigezawa GY; Yeung HN; Huxtable RF
    Acta Anaesthesiol Scand Suppl; 1978; 68():111-7. PubMed ID: 279192
    [No Abstract]   [Full Text] [Related]  

  • 4. Online CO2 monitoring during cardiopulmonary bypass using ETCO2 gas analysis during pH stat strategy of acid-base management.
    Saxena P; Bhan A; Sharma R; Saxena N
    Ann Thorac Surg; 2001 Dec; 72(6):2186-7. PubMed ID: 11789840
    [No Abstract]   [Full Text] [Related]  

  • 5. Clinical evaluation of an instrument to measure carbon dioxide tension at the oxygenator gas outlet in cardiopulmonary bypass.
    Kristiansen F; Høgetveit JO; Pedersen TH
    Perfusion; 2006 Jan; 21(1):21-6. PubMed ID: 16485695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygenator exhaust capnography: a method of estimating arterial carbon dioxide tension during cardiopulmonary bypass.
    Zia M; Davies FW; Alston RP; Anaes FC
    J Cardiothorac Vasc Anesth; 1992 Feb; 6(1):42-5. PubMed ID: 1543852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO2 monitoring during cardiopulmonary bypass.
    Jaffe TB; Bernhart J
    Anesthesiology; 1982 Jun; 56(6):485. PubMed ID: 6805366
    [No Abstract]   [Full Text] [Related]  

  • 8. Carbon dioxide field flooding techniques for open heart surgery: monitoring and minimizing potential adverse effects.
    Nadolny EM; Svensson LG
    Perfusion; 2000 Mar; 15(2):151-3. PubMed ID: 10789570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of temperature correction of blood gas values on the accuracy of end-tidal carbon dioxide monitoring in children after cardiac surgery.
    Suominen PK; Stayer S; Wang W; Chang AC
    ASAIO J; 2007; 53(6):670-4. PubMed ID: 18043144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increases in arterial to end-tidal CO2 tension differences after cardiopulmonary bypass.
    Bermudez J; Lichtiger M
    Anesth Analg; 1987 Jul; 66(7):690-2. PubMed ID: 3111303
    [No Abstract]   [Full Text] [Related]  

  • 11. [Development of a novel artificial heart-lung system for long-term cardiopulmonary support--experimental evaluation in goats with total cardiopulmonary bypass].
    Eya K
    Hokkaido Igaku Zasshi; 1999 Sep; 74(5):395-404. PubMed ID: 10495854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an instrument to indirectly monitor arterial pCO2 during cardiopulmonary bypass.
    Høgetveit JO; Kristiansen F; Pedersen TH
    Perfusion; 2006 Jan; 21(1):13-9. PubMed ID: 16485694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical evaluation of the on-line Sensicath blood gas monitoring system.
    Myklejord DJ; Pritzker MR; Nicoloff DM; Emery AM; Emery RW
    Heart Surg Forum; 1998; 1(1):60-4. PubMed ID: 11276442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic model of gas exchanges during cardiopulmonary bypass.
    Commin PL; Stucker O; Duvelleroy M
    Life Support Syst; 1986; 4 Suppl 1():23-35. PubMed ID: 3091957
    [No Abstract]   [Full Text] [Related]  

  • 15. [Minimal flow anesthesia and intraoperative gas monitoring].
    Feiereis HW
    Anasthesiol Intensivmed Notfallmed Schmerzther; 1998 Feb; 33 Suppl 1():S27-9. PubMed ID: 9530472
    [No Abstract]   [Full Text] [Related]  

  • 16. Carbon dioxide removal by a hemodialyzer with the dialysate channel coupled to the bubble oxygenator.
    Zborowski M; Kmiotek W; Sliwinska J; Ciszecki J; Werynski A
    Artif Organs; 1983 Nov; 7(4):481-4. PubMed ID: 6418121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic metabolism during cardiopulmonary bypass: predictive value of carbon dioxide derived parameters.
    Ranucci M; Isgrò G; Romitti F; Mele S; Biagioli B; Giomarelli P
    Ann Thorac Surg; 2006 Jun; 81(6):2189-95. PubMed ID: 16731152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independent control of blood gas PO2 and PCO2 in a bubble oxygenator.
    Sutherland KM; Pearson DT; Gordon LS
    Clin Phys Physiol Meas; 1988 May; 9(2):97-105. PubMed ID: 3134153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcutaneous monitoring of partial pressure of carbon dioxide in the elderly patient: a prospective, clinical comparison with end-tidal monitoring.
    Casati A; Squicciarini G; Malagutti G; Baciarello M; Putzu M; Fanelli A
    J Clin Anesth; 2006 Sep; 18(6):436-40. PubMed ID: 16980160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benefits of Continuous Monitoring of PCO2 Obtained from a System Applied to Membrane Oxygenator Exhaustion of the Cardiopulmonary Bypass Circuit.
    Filho VADR; Oliveira EL; Scramim JF; Sanga MA; Santos MAD
    Rev Port Cir Cardiotorac Vasc; 2019; 26(3):205-208. PubMed ID: 31734972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.