BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 7920251)

  • 1. The tryptophan residues of mitochondrial creatine kinase: roles of Trp-223, Trp-206, and Trp-264 in active-site and quaternary structure formation.
    Gross M; Furter-Graves EM; Wallimann T; Eppenberger HM; Furter R
    Protein Sci; 1994 Jul; 3(7):1058-68. PubMed ID: 7920251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free radical-induced inactivation of creatine kinase: influence on the octameric and dimeric states of the mitochondrial enzyme (Mib-CK).
    Koufen P; Rück A; Brdiczka D; Wendt S; Wallimann T; Stark G
    Biochem J; 1999 Dec; 344 Pt 2(Pt 2):413-7. PubMed ID: 10567223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The tryptophane residues of dimeric arginine kinase: roles of Trp-208 and Trp-218 in active site and conformation stability.
    Guo Q; Zhao F; Guo SY; Wang X
    Biochimie; 2004 Jun; 86(6):379-86. PubMed ID: 15358054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of assembly and dissociation of the mitochondrial creatine kinase octamer. A fluorescence study.
    Gross M; Wallimann T
    Biochemistry; 1993 Dec; 32(50):13933-40. PubMed ID: 8268169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimer-dimer interactions in octameric mitochondrial creatine kinase.
    Gross M; Wallimann T
    Biochemistry; 1995 May; 34(20):6660-7. PubMed ID: 7756297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational dynamics of DnaB helicase upon DNA and nucleotide binding: analysis by intrinsic tryptophan fluorescence quenching.
    Flowers S; Biswas EE; Biswas SB
    Biochemistry; 2003 Feb; 42(7):1910-21. PubMed ID: 12590577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady-state kinetics and tryptophan fluorescence properties of halohydrin dehalogenase from Agrobacterium radiobacter. Roles of W139 and W249 in the active site and halide-induced conformational change.
    Tang L; van Merode AE; Lutje Spelberg JH; Fraaije MW; Janssen DB
    Biochemistry; 2003 Dec; 42(47):14057-65. PubMed ID: 14636074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cofactor and tryptophan accessibility and unfolding of brain glutamate decarboxylase.
    Rust E; Martin DL; Chen CH
    Arch Biochem Biophys; 2001 Aug; 392(2):333-40. PubMed ID: 11488610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of tryptophan residues in an integral membrane protein: diacylglycerol kinase.
    Clark EH; East JM; Lee AG
    Biochemistry; 2003 Sep; 42(37):11065-73. PubMed ID: 12974643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T
    Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of pyridoxal 5'-phosphate with tryptophan-139 at the subunit interface of dimeric D-amino acid transaminase.
    Martinez del Pozo A; van Ophem PW; Ringe D; Petsko G; Soda K; Manning JM
    Biochemistry; 1996 Feb; 35(7):2112-6. PubMed ID: 8652553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: orientation of peptide and protein binding.
    Yuan T; Weljie AM; Vogel HJ
    Biochemistry; 1998 Mar; 37(9):3187-95. PubMed ID: 9485473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the proline-dependent conformational change in the multifunctional PutA flavoprotein by tryptophan fluorescence spectroscopy.
    Zhu W; Becker DF
    Biochemistry; 2005 Sep; 44(37):12297-306. PubMed ID: 16156643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of horse liver alcohol dehydrogenase upon substitution of tryptophan 314 at the dimer interface.
    Strasser F; Dey J; Eftink MR; Plapp BV
    Arch Biochem Biophys; 1998 Oct; 358(2):369-76. PubMed ID: 9784252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence of native single-Trp mutants in the lactose permease from Escherichia coli: structural properties and evidence for a substrate-induced conformational change.
    Weitzman C; Consler TG; Kaback HR
    Protein Sci; 1995 Nov; 4(11):2310-8. PubMed ID: 8563627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of local native-like tertiary structures in the slow refolding reaction of human carbonic anhydrase II as monitored by circular dichroism on tryptophan mutants.
    Andersson D; Freskgård PO; Jonsson BH; Carlsson U
    Biochemistry; 1997 Apr; 36(15):4623-30. PubMed ID: 9109672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of mitochondrial creatine kinase.
    Fritz-Wolf K; Schnyder T; Wallimann T; Kabsch W
    Nature; 1996 May; 381(6580):341-5. PubMed ID: 8692275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural changes of creatine kinase upon substrate binding.
    Forstner M; Kriechbaum M; Laggner P; Wallimann T
    Biophys J; 1998 Aug; 75(2):1016-23. PubMed ID: 9675202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in MM-CK conformational mobility upon formation of the ADP-Mg(2+)-NO(3)(-)-creatine transition state analogue complex as detected by hydrogen/deuterium exchange.
    Mazon H; Marcillat O; Forest E; Vial C
    Biochemistry; 2003 Nov; 42(46):13596-604. PubMed ID: 14622006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of brain-type creatine kinase at 1.41 A resolution.
    Eder M; Schlattner U; Becker A; Wallimann T; Kabsch W; Fritz-Wolf K
    Protein Sci; 1999 Nov; 8(11):2258-69. PubMed ID: 10595529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.