These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 7921236)

  • 21. Role of bkdR, a transcriptional activator of the sigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis.
    Debarbouille M; Gardan R; Arnaud M; Rapoport G
    J Bacteriol; 1999 Apr; 181(7):2059-66. PubMed ID: 10094682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis.
    Gaballa A; Helmann JD
    J Bacteriol; 1998 Nov; 180(22):5815-21. PubMed ID: 9811636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An operon encoding a novel ABC-type transport system in Bacillus subtilis.
    Rodriguez F; Grandi G
    Microbiology (Reading); 1995 Jul; 141 ( Pt 7)():1781-4. PubMed ID: 7551042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon.
    Slack FJ; Serror P; Joyce E; Sonenshein AL
    Mol Microbiol; 1995 Feb; 15(4):689-702. PubMed ID: 7783641
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cloning and characterization of a Bacillus thuringiensis homolog of the spoIIID gene from Bacillus subtilis.
    Yoshisue H; Ihara K; Nishimoto T; Sakai H; Komano T
    Gene; 1995 Feb; 154(1):23-9. PubMed ID: 7867944
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of glucose-specific catabolite repression-resistant mutants of Bacillus subtilis: identification of a novel hexose:H+ symporter.
    Paulsen IT; Chauvaux S; Choi P; Saier MH
    J Bacteriol; 1998 Feb; 180(3):498-504. PubMed ID: 9457850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two MerR homologues that affect copper induction of the Bacillus subtilis copZA operon.
    Gaballa A; Cao M; Helmann JD
    Microbiology (Reading); 2003 Dec; 149(Pt 12):3413-3421. PubMed ID: 14663075
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorylation of Spo0A activates its stimulation of in vitro transcription from the Bacillus subtilis spoIIG operon.
    Bird TH; Grimsley JK; Hoch JA; Spiegelman GB
    Mol Microbiol; 1993 Aug; 9(4):741-9. PubMed ID: 8231806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of the central glycolytic genes in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate.
    Doan T; Aymerich S
    Mol Microbiol; 2003 Mar; 47(6):1709-21. PubMed ID: 12622823
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of mtl operon promoter of Bacillus subtilis: requirements of its use in expression vectors.
    Heravi KM; Wenzel M; Altenbuchner J
    Microb Cell Fact; 2011 Oct; 10():83. PubMed ID: 22014119
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of the DNA sequence downstream of the Bacillus subtilis hut promoter in regulation of the hut operon.
    Eda S; Hoshino T; Oda M
    Biosci Biotechnol Biochem; 2000 Mar; 64(3):484-91. PubMed ID: 10803944
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Similar organization of the nusA-infB operon in Bacillus subtilis and Escherichia coli.
    Shazand K; Tucker J; Grunberg-Manago M; Rabinowitz JC; Leighton T
    J Bacteriol; 1993 May; 175(10):2880-7. PubMed ID: 8491709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis.
    Weickert MJ; Chambliss GH
    Proc Natl Acad Sci U S A; 1990 Aug; 87(16):6238-42. PubMed ID: 2117276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT.
    Stülke J; Martin-Verstraete I; Zagorec M; Rose M; Klier A; Rapoport G
    Mol Microbiol; 1997 Jul; 25(1):65-78. PubMed ID: 11902727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Promoter-independent catabolite repression of the Bacillus subtilis gnt operon.
    Miwa Y; Fujita Y
    J Biochem; 1993 Jun; 113(6):665-71. PubMed ID: 8370661
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mode of action of AraR, the key regulator of L-arabinose metabolism in Bacillus subtilis.
    Mota LJ; Tavares P; Sá-Nogueira I
    Mol Microbiol; 1999 Aug; 33(3):476-89. PubMed ID: 10417639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of the Bacillus subtilis pur operon repressor.
    Weng M; Nagy PL; Zalkin H
    Proc Natl Acad Sci U S A; 1995 Aug; 92(16):7455-9. PubMed ID: 7638212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two genes from Bacillus subtilis under the sole control of the general stress transcription factor sigmaB.
    Akbar S; Lee SY; Boylan SA; Price CW
    Microbiology (Reading); 1999 May; 145 ( Pt 5)():1069-1078. PubMed ID: 10376822
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of the cis sequence involved in catabolite repression of the Bacillus subtilis gnt operon; implication of a consensus sequence in catabolite repression in the genus Bacillus.
    Miwa Y; Fujita Y
    Nucleic Acids Res; 1990 Dec; 18(23):7049-53. PubMed ID: 2124676
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the Bacillus subtilis YxdJ response regulator as the inducer of expression for the cognate ABC transporter YxdLM.
    Joseph P; Guiseppi A; Sorokin A; Denizot F
    Microbiology (Reading); 2004 Aug; 150(Pt 8):2609-2617. PubMed ID: 15289557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.