These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 7921236)

  • 41. Analysis of Bacillus subtilis tagAB and tagDEF expression during phosphate starvation identifies a repressor role for PhoP-P.
    Liu W; Eder S; Hulett FM
    J Bacteriol; 1998 Feb; 180(3):753-8. PubMed ID: 9457886
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The pst operon of Bacillus subtilis has a phosphate-regulated promoter and is involved in phosphate transport but not in regulation of the pho regulon.
    Qi Y; Kobayashi Y; Hulett FM
    J Bacteriol; 1997 Apr; 179(8):2534-9. PubMed ID: 9098050
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cloning, nucleotide sequence, and regulation of the Bacillus subtilis pbpE operon, which codes for penicillin-binding protein 4* and an apparent amino acid racemase.
    Popham DL; Setlow P
    J Bacteriol; 1993 May; 175(10):2917-25. PubMed ID: 8491712
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids.
    Lazarevic V; Karamata D
    Mol Microbiol; 1995 Apr; 16(2):345-55. PubMed ID: 7565096
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins.
    Que Q; Helmann JD
    Mol Microbiol; 2000 Mar; 35(6):1454-68. PubMed ID: 10760146
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in L-arabinose utilization.
    Sá-Nogueira I; Ramos SS
    J Bacteriol; 1997 Dec; 179(24):7705-11. PubMed ID: 9401028
    [TBL] [Abstract][Full Text] [Related]  

  • 47. comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis.
    van Sinderen D; Luttinger A; Kong L; Dubnau D; Venema G; Hamoen L
    Mol Microbiol; 1995 Feb; 15(3):455-62. PubMed ID: 7783616
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bacillus subtilis F0F1 ATPase: DNA sequence of the atp operon and characterization of atp mutants.
    Santana M; Ionescu MS; Vertes A; Longin R; Kunst F; Danchin A; Glaser P
    J Bacteriol; 1994 Nov; 176(22):6802-11. PubMed ID: 7961438
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The ribR gene encodes a monofunctional riboflavin kinase which is involved in regulation of the Bacillus subtilis riboflavin operon.
    Solovieva IM; Kreneva RA; Leak DJ; Perumov DA
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():67-73. PubMed ID: 10206712
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation of the tryptophan biosynthetic genes in Bacillus halodurans: common elements but different strategies than those used by Bacillus subtilis.
    Szigeti R; Milescu M; Gollnick P
    J Bacteriol; 2004 Feb; 186(3):818-28. PubMed ID: 14729709
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification and characterization of a DeoR-specific operator sequence essential for induction of dra-nupC-pdp operon expression in Bacillus subtilis.
    Zeng X; Saxild HH
    J Bacteriol; 1999 Mar; 181(6):1719-27. PubMed ID: 10074062
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A sigma E dependent operon subject to catabolite repression during sporulation in Bacillus subtilis.
    Bryan EM; Beall BW; Moran CP
    J Bacteriol; 1996 Aug; 178(16):4778-86. PubMed ID: 8759838
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Bacillus subtilis response regulator Spo0A stimulates transcription of the spoIIG operon through modification of RNA polymerase promoter complexes.
    Bird TH; Grimsley JK; Hoch JA; Spiegelman GB
    J Mol Biol; 1996 Mar; 256(3):436-48. PubMed ID: 8604129
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ribose utilization in Lactobacillus sakei: analysis of the regulation of the rbs operon and putative involvement of a new transporter.
    Stentz R; Zagorec M
    J Mol Microbiol Biotechnol; 1999 Aug; 1(1):165-73. PubMed ID: 10941799
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor sigma B in response to environmental signals.
    Wise AA; Price CW
    J Bacteriol; 1995 Jan; 177(1):123-33. PubMed ID: 8002610
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nucleotide sequence and features of the Bacillus licheniformis gnt operon.
    Yoshida K; Seki S; Fujita Y
    DNA Res; 1994; 1(4):157-62. PubMed ID: 8535972
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The riboflavin kinase encoding gene ribR of Bacillus subtilis is a part of a 10 kb operon, which is negatively regulated by the yrzC gene product.
    Solovieva IM; Kreneva RA; Errais Lopes L; Perumov DA
    FEMS Microbiol Lett; 2005 Feb; 243(1):51-8. PubMed ID: 15668000
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of an lrp-like (lrpC) gene from Bacillus subtilis.
    Beloin C; Ayora S; Exley R; Hirschbein L; Ogasawara N; Kasahara Y; Alonso JC; Hégarat FL
    Mol Gen Genet; 1997 Sep; 256(1):63-71. PubMed ID: 9341680
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon.
    Martin-Verstraete I; Stülke J; Klier A; Rapoport G
    J Bacteriol; 1995 Dec; 177(23):6919-27. PubMed ID: 7592486
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of a chimeric proU operon in a subtilin-producing mutant of Bacillus subtilis 168.
    Lin Y; Hansen JN
    J Bacteriol; 1995 Dec; 177(23):6874-80. PubMed ID: 7592481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.