These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 7921241)
1. Activity of the plasma membrane H(+)-ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae. Coote PJ; Jones MV; Seymour IJ; Rowe DL; Ferdinando DP; McArthur AJ; Cole MB Microbiology (Reading); 1994 Aug; 140 ( Pt 8)():1881-90. PubMed ID: 7921241 [TBL] [Abstract][Full Text] [Related]
2. Induction of increased thermotolerance in Saccharomyces cerevisiae may be triggered by a mechanism involving intracellular pH. Coote PJ; Cole MB; Jones MV J Gen Microbiol; 1991 Jul; 137(7):1701-8. PubMed ID: 1835495 [TBL] [Abstract][Full Text] [Related]
3. Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase. Piper PW; Ortiz-Calderon C; Holyoak C; Coote P; Cole M Cell Stress Chaperones; 1997 Mar; 2(1):12-24. PubMed ID: 9250391 [TBL] [Abstract][Full Text] [Related]
4. The activity of plasma membrane H(+)-ATPase is strongly stimulated during Saccharomyces cerevisiae adaptation to growth under high copper stress, accompanying intracellular acidification. Fernandes AR; Sá-Correia I Yeast; 2001 Apr; 18(6):511-21. PubMed ID: 11284007 [TBL] [Abstract][Full Text] [Related]
5. Weak acid preservatives block the heat shock response and heat-shock-element-directed lacZ expression of low pH Saccharomyces cerevisiae cultures, an inhibitory action partially relieved by respiratory deficiency. Cheng L; Piper PW Microbiology (Reading); 1994 May; 140 ( Pt 5)():1085-96. PubMed ID: 8025674 [TBL] [Abstract][Full Text] [Related]
6. The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. Piper PW FEMS Microbiol Lett; 1995 Dec; 134(2-3):121-7. PubMed ID: 8586257 [TBL] [Abstract][Full Text] [Related]
7. Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae. Piper PW FEMS Microbiol Rev; 1993 Aug; 11(4):339-55. PubMed ID: 8398211 [TBL] [Abstract][Full Text] [Related]
8. The C-terminus of yeast plasma membrane H+-ATPase is essential for the regulation of this enzyme by heat shock protein Hsp30, but not for stress activation. Braley R; Piper PW FEBS Lett; 1997 Nov; 418(1-2):123-6. PubMed ID: 9414109 [TBL] [Abstract][Full Text] [Related]
9. Activation of plasma membrane H(+)-ATPase and expression of PMA1 and PMA2 genes in Saccharomyces cerevisiae cells grown at supraoptimal temperatures. Viegas CA; Sebastião PB; Nunes AG; Sá-Correia I Appl Environ Microbiol; 1995 May; 61(5):1904-9. PubMed ID: 7646027 [TBL] [Abstract][Full Text] [Related]
10. Acquisition of thermotolerance in Saccharomyces cerevisiae without heat shock protein hsp 104 and in the absence of protein synthesis. De Virgilio C; Piper P; Boller T; Wiemken A FEBS Lett; 1991 Aug; 288(1-2):86-90. PubMed ID: 1831771 [TBL] [Abstract][Full Text] [Related]
11. The plasma membrane of yeast acquires a novel heat-shock protein (hsp30) and displays a decline in proton-pumping ATPase levels in response to both heat shock and the entry to stationary phase. Panaretou B; Piper PW Eur J Biochem; 1992 Jun; 206(3):635-40. PubMed ID: 1535043 [TBL] [Abstract][Full Text] [Related]
12. Modification of Saccharomyces cerevisiae thermotolerance following rapid exposure to acid stress. Carmelo V; Santos R; Viegas CA; Sá-Correia I Int J Food Microbiol; 1998 Jul; 42(3):225-30. PubMed ID: 9728695 [TBL] [Abstract][Full Text] [Related]
13. De novo protein synthesis is essential for thermotolerance acquisition in a Saccharomyces cerevisiae trehalose synthase mutant. Gross C; Watson K Biochem Mol Biol Int; 1998 Jul; 45(4):663-71. PubMed ID: 9713688 [TBL] [Abstract][Full Text] [Related]
14. The plasma membrane H+-ATPase is related to the development of salicylic acid-induced thermotolerance in pea leaves. Liu Y; Liu H; Pan Q; Yang H; Zhan J; Huang W Planta; 2009 Apr; 229(5):1087-98. PubMed ID: 19225806 [TBL] [Abstract][Full Text] [Related]
15. The Saccharomyces cerevisiae start mutant carrying the cdc25 mutation is defective in activation of plasma membrane ATPase by glucose. Portillo F; Mazón MJ J Bacteriol; 1986 Dec; 168(3):1254-7. PubMed ID: 2877973 [TBL] [Abstract][Full Text] [Related]
16. TPK gene products mediate cAMP-independent thermotolerance in Saccharomyces cerevisiae. Coote PJ; Jones MV; Edgar K; Cole MB J Gen Microbiol; 1992 Dec; 138(12):2551-7. PubMed ID: 1336794 [TBL] [Abstract][Full Text] [Related]
17. Acquired thermotolerance following heat shock protein synthesis prevents impairment of mitochondrial ATPase activity at elevated temperatures in Saccharomyces cerevisiae. Patriarca EJ; Maresca B Exp Cell Res; 1990 Sep; 190(1):57-64. PubMed ID: 2143732 [TBL] [Abstract][Full Text] [Related]
18. [Effect of sodium azide on heat-shock resistance in Saccharomyces cerevisiae and Debaryomyces vanriji yeasts]. Rikhvanov EG; Varakina NN; Rusaleva TM; Rachenko EI; Kiseleva VA; Voĭnikov VK Mikrobiologiia; 2001; 70(3):300-4. PubMed ID: 11450450 [TBL] [Abstract][Full Text] [Related]
19. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses. Charoenbhakdi S; Dokpikul T; Burphan T; Techo T; Auesukaree C Appl Environ Microbiol; 2016 May; 82(10):3121-3130. PubMed ID: 26994074 [TBL] [Abstract][Full Text] [Related]
20. Thermosensitive phenotype of yeast mutant lacking thioredoxin peroxidase. Lee SM; Park JW Arch Biochem Biophys; 1998 Nov; 359(1):99-106. PubMed ID: 9799566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]