These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 7921595)

  • 41. Delineating residues for haemolytic activities of snake venom cardiotoxin 1 from Naja naja as probed by molecular dynamics simulations and in vitro validations.
    Gorai B; Sivaraman T
    Int J Biol Macromol; 2017 Feb; 95():1022-1036. PubMed ID: 27984143
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative study of the cytolytic activity of snake venoms from African spitting cobras (Naja spp., Elapidae) and its neutralization by a polyspecific antivenom.
    Méndez I; Gutiérrez JM; Angulo Y; Calvete JJ; Lomonte B
    Toxicon; 2011 Nov; 58(6-7):558-64. PubMed ID: 21924279
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Whole snake venoms: Cytotoxic, anti-metastatic and antiangiogenic properties.
    Kerkkamp H; Bagowski C; Kool J; van Soolingen B; Vonk FJ; Vlecken D
    Toxicon; 2018 Aug; 150():39-49. PubMed ID: 29763628
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular cloning and characterization of a complement-depleting factor from king cobra, Ophiophagus hannah.
    Zeng L; Sun QY; Jin Y; Zhang Y; Lee WH; Zhang Y
    Toxicon; 2012 Sep; 60(3):290-301. PubMed ID: 22561424
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The biological properties of venoms of some American coral snakes (Genus micrurus).
    Tan NH; Ponnudurai G
    Comp Biochem Physiol B; 1992 Mar; 101(3):471-4. PubMed ID: 1582185
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hemostatic interference of Indian king cobra (Ophiophagus hannah) Venom. Comparison with three other snake venoms of the subcontinent.
    Gowtham YJ; Kumar MS; Girish KS; Kemparaju K
    Biochemistry (Mosc); 2012 Jun; 77(6):639-47. PubMed ID: 22817464
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anti-coagulant activity of a metalloprotease: further characterization from the Indian cobra (Naja naja) venom.
    Kumar MS; Devaraj VR; Vishwanath BS; Kemparaju K
    J Thromb Thrombolysis; 2010 Apr; 29(3):340-8. PubMed ID: 19629641
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Simple and Novel Strategy for the Production of a Pan-specific Antiserum against Elapid Snakes of Asia.
    Ratanabanangkoon K; Tan KY; Eursakun S; Tan CH; Simsiriwong P; Pamornsakda T; Wiriyarat W; Klinpayom C; Tan NH
    PLoS Negl Trop Dis; 2016 Apr; 10(4):e0004565. PubMed ID: 27058956
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Primary structures and partial toxicological characterization of two phospholipases A
    Rey-Suárez P; Núñez V; Saldarriaga-Córdoba M; Lomonte B
    Biochimie; 2017 Jun; 137():88-98. PubMed ID: 28315380
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Antigenic cross-reactivity among components of Brazilian Elapidae snake venoms.
    Higashi HG; Guidolin R; Caricati CP; Fernandes I; Marcelino JR; Morais JF; Yamagushi IK; Stephano MA; Dias-da-Silva W; Takehara HA
    Braz J Med Biol Res; 1995 Jul; 28(7):767-71. PubMed ID: 8580868
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neutralization of the pharmacological effects of Cobra and Krait venoms by chicken egg yolk antibodies.
    Meenatchisundaram S; Parameswari G; Michael A; Ramalingam S
    Toxicon; 2008 Aug; 52(2):221-7. PubMed ID: 18590753
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differential action of proteases from Trimeresurus malabaricus, Naja naja and Daboia russellii venoms on hemostasis.
    Gowda CD; Nataraju A; Rajesh R; Dhananjaya BL; Sharath BK; Vishwanath BS
    Comp Biochem Physiol C Toxicol Pharmacol; 2006 Jul; 143(3):295-302. PubMed ID: 16627005
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Hemolytic activity of venoms from snakes of the genera Bothrop, Lachesis, Crotalus, and Micrurus (Serpentes: Viperidae and Elapidae].
    Martínez Cadillo E; Bonilla Ferreyra C; Zvealeta A
    Rev Biol Trop; 1991 Nov; 39(2):311-4. PubMed ID: 1844159
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An efficient analytical platform for on-line microfluidic profiling of neuroactive snake venoms towards nicotinic receptor affinity.
    Heus F; Vonk F; Otvos RA; Bruyneel B; Smit AB; Lingeman H; Richardson M; Niessen WM; Kool J
    Toxicon; 2013 Jan; 61():112-24. PubMed ID: 23159399
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interactions in red blood cells between fatty acids and either snake venom cardiotoxin or halothane.
    Fletcher JE; Jiang MS; Tripolitis L; Smith LA; Beech J
    Toxicon; 1990; 28(6):657-67. PubMed ID: 2402762
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cysteine proteinase inhibitors in elapid and hydrophiid snake venoms.
    Mashiko H; Takahashi H
    Toxicon; 2002 Sep; 40(9):1275-81. PubMed ID: 12220712
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The action of Echis carinatus and Naja naja venoms on human neutrophils; an emphasis on NETosis.
    Swethakumar B; NaveenKumar SK; Girish KS; Kemparaju K
    Biochim Biophys Acta Gen Subj; 2020 Jun; 1864(6):129561. PubMed ID: 32068016
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanism of platelet effects of cardiotoxins from Naja nigricollis crawshawii (spitting cobra) snake venom.
    Kini RM; Evans HJ
    Thromb Res; 1988 Nov; 52(3):185-95. PubMed ID: 3194895
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An improved method for the isolation from Naja naja venom of cobra factor (CoF) free of phospholipase A.
    Pepys MB; Tompkins C; Smith AD
    J Immunol Methods; 1979; 30(2):105-17. PubMed ID: 574149
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Encapsulation of the cobra cytotoxin P4 in liposomes.
    Chaim-Matyas A; Borkow G; Ovadia M
    Biotechnol Appl Biochem; 1993 Feb; 17(1):31-6. PubMed ID: 8439402
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.