BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 7921649)

  • 1. Mapping and organization of highly-repeated DNA sequences by means of simultaneous and sequential FISH and C-banding in 6x-triticale.
    Cuadrado A; Jouve N
    Chromosome Res; 1994 Jul; 2(4):331-8. PubMed ID: 7921649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent in situ hybridization and C-banding analyses of highly repetitive DNA sequences in the heterochromatin of rye (Secale montanum Guss.) and wheat incorporating S. montanum chromosome segments.
    Cuadrado A; Jouve N
    Genome; 1995 Aug; 38(4):795-802. PubMed ID: 7672610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat.
    McIntyre CL; Pereira S; Moran LB; Appels R
    Genome; 1990 Oct; 33(5):635-40. PubMed ID: 2262137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An optimized fluorescence in situ hybridization procedure for detecting rye chromosomes in wheat.
    Nkongolo KK; Lapitan NL; Quick JS; Muhlmann MD
    Genome; 1993 Aug; 36(4):701-5. PubMed ID: 8405987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Production of wheat-rye substitution lines and identification of chromosome composition of karyotypes using C-banding, GISH, and SSR markers].
    Silkova OG; Dobrovol'skaia OB; Dubovets NI; Adonina IG; Kravtsova LA; Roder MS; Salina EA; Shchapova AI; Shumnyĭ VK
    Genetika; 2006 Jun; 42(6):793-802. PubMed ID: 16871784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of wheat-Secale africanum chromosome 5R(a) derivatives carrying Secale specific genes for grain hardness.
    Li G; Gao D; La S; Wang H; Li J; He W; Yang E; Yang Z
    Planta; 2016 May; 243(5):1203-12. PubMed ID: 26883668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organization of highly repeated sequences in surface-spread pachytene chromosomes of rye.
    Cuñado N; Barrios J; Santos JL
    Genome; 2000 Dec; 43(6):945-8. PubMed ID: 11195347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic architecture of alpha-amylase activity in mature rye grain relative to that of preharvest sprouting.
    Masojć P; Wiśniewska M; Łań A; Milczarski P; Berdzik M; Pędziwiatr D; Pol-Szyszko M; Gałęza M; Owsianicki R
    J Appl Genet; 2011 May; 52(2):153-60. PubMed ID: 21225388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of triticale cultivars through FISH karyotyping of their rye chromosomes.
    Fradkin M; Ferrari MR; Espert SM; Ferreira V; Grassi E; Greizerstein EJ; Poggio L
    Genome; 2013 May; 56(5):267-72. PubMed ID: 23789994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical mapping of 5S rDNA reveals a new locus on 3R and unexpected complexity in a rye translocation used in chromosome mapping.
    Alonso-Blanco C; Pendás AM; Garcia-Suarez R; Roca A; Goicoechea PG; Giraldez R
    Chromosoma; 1994 Sep; 103(5):331-7. PubMed ID: 7821088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations and abnormal mitosis of wheat chromosomes induced by wheat-rye monosomic addition lines.
    Fu S; Yang M; Fei Y; Tan F; Ren Z; Yan B; Zhang H; Tang Z
    PLoS One; 2013; 8(7):e70483. PubMed ID: 23936213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 5-Methylcytosine distribution and genome organization in triticale before and after treatment with 5-azacytidine.
    Castilho A; Neves N; Rufini-Castiglione M; Viegas W; Heslop-Harrison JS
    J Cell Sci; 1999 Dec; 112 ( Pt 23)():4397-404. PubMed ID: 10564657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis.
    Tang Z; Yang Z; Fu S
    J Appl Genet; 2014 Aug; 55(3):313-8. PubMed ID: 24782110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly repetitive sequences in B chromosomes of Secale cereale revealed by fluorescence in situ hybridization.
    Cuadrado A; Jouve N
    Genome; 1994 Aug; 37(4):709-12. PubMed ID: 18470113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DOP-PCR based painting of rye chromosomes in a wheat background.
    Deng C; Bai L; Li S; Zhang Y; Li X; Chen Y; Wang RR; Han F; Hu Z
    Genome; 2014 Sep; 57(9):473-9. PubMed ID: 25429799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introgression of A- and B-genome of tetraploid triticale chromatin into tetraploid rye.
    Wiśniewska H; Kwiatek M; Kulak-Książczyk S; Apolinarska B
    J Appl Genet; 2013 Nov; 54(4):435-40. PubMed ID: 24061771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome merger: from sequence rearrangements in triticale to their elimination in wheat-rye addition lines.
    Bento M; Gustafson P; Viegas W; Silva M
    Theor Appl Genet; 2010 Aug; 121(3):489-97. PubMed ID: 20383487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleolar dominance in triticales: control by unlinked genes.
    Neves N; Silva M; Heslop-Harrison JS; Viegas W
    Chromosome Res; 1997 Apr; 5(2):125-31. PubMed ID: 9146916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genomic in situ hybridization (cGISH) analysis on plant chromosomes revealed by labelled Arabidopsis DNA.
    Zoller JF; Yang Y; Herrmann RG; Hohmann U
    Chromosome Res; 2001; 9(5):357-75. PubMed ID: 11448038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The chromosomal organization of simple sequence repeats in wheat and rye genomes.
    Cuadrado A; Schwarzacher T
    Chromosoma; 1998 Dec; 107(8):587-94. PubMed ID: 9933412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.