These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 7922790)
1. Effects of loading rate on strength of the proximal femur. Courtney AC; Wachtel EF; Myers ER; Hayes WC Calcif Tissue Int; 1994 Jul; 55(1):53-8. PubMed ID: 7922790 [TBL] [Abstract][Full Text] [Related]
2. Age-related reductions in the strength of the femur tested in a fall-loading configuration. Courtney AC; Wachtel EF; Myers ER; Hayes WC J Bone Joint Surg Am; 1995 Mar; 77(3):387-95. PubMed ID: 7890787 [TBL] [Abstract][Full Text] [Related]
3. Comparison of non-invasive assessments of strength of the proximal femur. Johannesdottir F; Thrall E; Muller J; Keaveny TM; Kopperdahl DL; Bouxsein ML Bone; 2017 Dec; 105():93-102. PubMed ID: 28739416 [TBL] [Abstract][Full Text] [Related]
4. Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Pinilla TP; Boardman KC; Bouxsein ML; Myers ER; Hayes WC Calcif Tissue Int; 1996 Apr; 58(4):231-5. PubMed ID: 8661953 [TBL] [Abstract][Full Text] [Related]
5. DXA predictions of human femoral mechanical properties depend on the load configuration. Dall'Ara E; Luisier B; Schmidt R; Pretterklieber M; Kainberger F; Zysset P; Pahr D Med Eng Phys; 2013 Nov; 35(11):1564-72; discussion 1564. PubMed ID: 23684578 [TBL] [Abstract][Full Text] [Related]
6. Influence of test paradigm on loading dynamics during proximal femur fracture tests simulating sideways falls. Martel DR; Callaghan JP; Mourtzakis M; Willett TL; Laing AC J Mech Behav Biomed Mater; 2024 Sep; 157():106631. PubMed ID: 38986216 [TBL] [Abstract][Full Text] [Related]
7. Prediction of Hip Failure Load: In Vitro Study of 80 Femurs Using Three Imaging Methods and Finite Element Models-The European Fracture Study (EFFECT). Pottecher P; Engelke K; Duchemin L; Museyko O; Moser T; Mitton D; Vicaut E; Adams J; Skalli W; Laredo JD; Bousson V Radiology; 2016 Sep; 280(3):837-47. PubMed ID: 27077380 [TBL] [Abstract][Full Text] [Related]
8. Proximal femur elastic behaviour is the same in impact and constant displacement rate fall simulation. Gilchrist S; Nishiyama KK; de Bakker P; Guy P; Boyd SK; Oxland T; Cripton PA J Biomech; 2014 Nov; 47(15):3744-9. PubMed ID: 25443780 [TBL] [Abstract][Full Text] [Related]
9. Comparison of femur stiffness measured from DXA and QCT for assessment of hip fracture risk. Luo Y; Yang H J Bone Miner Metab; 2019 Mar; 37(2):342-350. PubMed ID: 29671044 [TBL] [Abstract][Full Text] [Related]
10. Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography. Hayes WC; Piazza SJ; Zysset PK Radiol Clin North Am; 1991 Jan; 29(1):1-18. PubMed ID: 1985322 [TBL] [Abstract][Full Text] [Related]
11. Predictive value of proximal femoral bone densitometry in determining local orthogonal material properties. Cody DD; McCubbrey DA; Divine GW; Gross GJ; Goldstein SA J Biomech; 1996 Jun; 29(6):753-61. PubMed ID: 9147972 [TBL] [Abstract][Full Text] [Related]
12. Ultrasound and densitometry of the calcaneus correlate with the failure loads of cadaveric femurs. Bouxsein ML; Courtney AC; Hayes WC Calcif Tissue Int; 1995 Feb; 56(2):99-103. PubMed ID: 7736330 [TBL] [Abstract][Full Text] [Related]
13. Comparing the fracture limits of the proximal femur under impact and quasi-static conditions in simulation of a sideways fall. Jazinizadeh F; Mohammadi H; Quenneville CE J Mech Behav Biomed Mater; 2020 Mar; 103():103593. PubMed ID: 32090922 [TBL] [Abstract][Full Text] [Related]
14. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M; Zdero R; Schemitsch EH; Zalzal P J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093 [TBL] [Abstract][Full Text] [Related]
15. In situ femoral dual-energy X-ray absorptiometry related to ash weight, bone size and density, and its relationship with mechanical failure loads of the proximal femur. Lochmüller EM; Miller P; Bürklein D; Wehr U; Rambeck W; Eckstein F Osteoporos Int; 2000; 11(4):361-7. PubMed ID: 10928227 [TBL] [Abstract][Full Text] [Related]
16. The effect of impact direction on the structural capacity of the proximal femur during falls. Ford CM; Keaveny TM; Hayes WC J Bone Miner Res; 1996 Mar; 11(3):377-83. PubMed ID: 8852948 [TBL] [Abstract][Full Text] [Related]
17. Comparison of force attenuation properties of four different hip protectors under simulated falling conditions in the elderly: an in vitro biomechanical study. Kannus P; Parkkari J; Poutala J Bone; 1999 Aug; 25(2):229-35. PubMed ID: 10456390 [TBL] [Abstract][Full Text] [Related]
18. Microstructural failure mechanisms in the human proximal femur for sideways fall loading. Nawathe S; Akhlaghpour H; Bouxsein ML; Keaveny TM J Bone Miner Res; 2014 Feb; 29(2):507-15. PubMed ID: 23832419 [TBL] [Abstract][Full Text] [Related]
19. Relation between age, femoral neck cortical stability, and hip fracture risk. Mayhew PM; Thomas CD; Clement JG; Loveridge N; Beck TJ; Bonfield W; Burgoyne CJ; Reeve J Lancet; 2005 Jul 9-15; 366(9480):129-35. PubMed ID: 16005335 [TBL] [Abstract][Full Text] [Related]
20. Effects of loading rate on the of mechanical behavior of the femur in falling condition. Askarinejad S; Johnson JE; Rahbar N; Troy KL J Mech Behav Biomed Mater; 2019 Aug; 96():269-278. PubMed ID: 31075748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]