BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 7923775)

  • 1. Bilirubin production in healthy term infants as measured by carbon monoxide in breath.
    Stevenson DK; Vreman HJ; Oh W; Fanaroff AA; Wright LL; Lemons JA; Verter J; Shankaran S; Tyson JE; Korones SB
    Clin Chem; 1994 Oct; 40(10):1934-9. PubMed ID: 7923775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isoimmunization is unlikely to be the cause of hemolysis in ABO-incompatible but direct antiglobulin test-negative neonates.
    Herschel M; Karrison T; Wen M; Caldarelli L; Baron B
    Pediatrics; 2002 Jul; 110(1 Pt 1):127-30. PubMed ID: 12093957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corrected end-tidal carbon monoxide closely correlates with the corrected reticulocyte count in coombs' test-positive term neonates.
    Javier MC; Krauss A; Nesin M
    Pediatrics; 2003 Dec; 112(6 Pt 1):1333-7. PubMed ID: 14654606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the direct antiglobulin (Coombs') test for identifying newborns at risk for hemolysis as determined by end-tidal carbon monoxide concentration (ETCOc); and comparison of the Coombs' test with ETCOc for detecting significant jaundice.
    Herschel M; Karrison T; Wen M; Caldarelli L; Baron B
    J Perinatol; 2002; 22(5):341-7. PubMed ID: 12082466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. End-tidal carbon monoxide is predictive for neonatal non-hemolytic hyperbilirubinemia.
    Okuyama H; Yonetani M; Uetani Y; Nakamura H
    Pediatr Int; 2001 Aug; 43(4):329-33. PubMed ID: 11472573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring End-Tidal Carbon Monoxide of Jaundiced Neonates in the Birth Hospital to Identify Those with Hemolysis.
    Christensen RD; Malleske DT; Lambert DK; Baer VL; Prchal JT; Denson LE; Gerday E; Weaver Lewis KA; Shepherd JG
    Neonatology; 2016; 109(1):1-5. PubMed ID: 26394287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of end-tidal carbon monoxide measurements with direct antiglobulin tests in the management of neonatal hyperbilirubinemia.
    Elsaie AL; Taleb M; Nicosia A; Zangaladze A; Pease ME; Newton K; Schutzman DL
    J Perinatol; 2020 Oct; 40(10):1513-1517. PubMed ID: 32203175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a fully automated end-tidal carbon monoxide instrument for breath analysis.
    Vreman HJ; Baxter LM; Stone RT; Stevenson DK
    Clin Chem; 1996 Jan; 42(1):50-6. PubMed ID: 8565232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of risk for neonatal haemolysis.
    Bhutani VK; Maisels MJ; Schutzman DL; Castillo Cuadrado ME; Aby JL; Bogen DL; Christensen RD; Watchko JF; Wong RJ; Stevenson DK
    Acta Paediatr; 2018 Aug; 107(8):1350-1356. PubMed ID: 29532503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serum bilirubin levels at 72 hours by selected characteristics in breastfed and formula-fed term infants delivered by cesarean section.
    Hintz SR; Gaylord TD; Oh W; Fanaroff AA; Mele L; Stevenson DK; Nichd FT;
    Acta Paediatr; 2001 Jul; 90(7):776-81. PubMed ID: 11519981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of hyperbilirubinemia in near-term and term infants.
    Stevenson DK; Fanaroff AA; Maisels MJ; Young BW; Wong RJ; Vreman HJ; MacMahon JR; Yeung CY; Seidman DS; Gale R; Oh W; Bhutani VK; Johnson LH; Kaplan M; Hammerman C; Nakamura H
    J Perinatol; 2001 Dec; 21 Suppl 1():S63-72; discussion S83-7. PubMed ID: 11803421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive Detection of Hemolysis with ETCOc Measurement in Neonates at Risk for Significant Hyperbilirubinemia.
    Bhatia A; Chua MC; Dela Puerta R; Rajadurai VS
    Neonatology; 2020; 117(5):612-618. PubMed ID: 32894848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An End-Tidal Carbon Monoxide Nomogram for Term and Late-Preterm Chinese Newborns.
    Bao Y; Zhu J; Ma L; Zhang H; Sun L; Xu C; Wu J; He Y; Du L
    J Pediatr; 2022 Nov; 250():16-21.e3. PubMed ID: 35835229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. End-tidal carbon monoxide in newborn infants: observations during the 1st week of life.
    Balaraman V; Pelke S; DiMauro S; Cheung S; Stevenson DK; Easa D
    Biol Neonate; 1995; 67(3):182-5. PubMed ID: 7640317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bilirubin production and hour-specific bilirubin levels.
    Bhutani VK; Wong RJ; Vreman HJ; Stevenson DK;
    J Perinatol; 2015 Sep; 35(9):735-8. PubMed ID: 25880796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased Carbon Monoxide Washout Rates in Newborn Infants.
    Stevenson DK; Wong RJ; Ostrander CR; Maric I; Vreman HJ; Cohen RS
    Neonatology; 2020; 117(1):118-122. PubMed ID: 31634890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of hyperbilirubinemia in near-term and term infants.
    Stevenson DK; Fanaroff AA; Maisels MJ; Young BW; Wong RJ; Vreman HJ; MacMahon JR; Yeung CY; Seidman DS; Gale R; Oh W; Bhutani VK; Johnson LH; Kaplan M; Hammerman C; Nakamura H
    Pediatrics; 2001 Jul; 108(1):31-9. PubMed ID: 11433051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semiportable electrochemical instrument for determining carbon monoxide in breath.
    Vreman HJ; Stevenson DK; Oh W; Fanaroff AA; Wright LL; Lemons JA; Wright E; Shankaran S; Tyson JE; Korones SB
    Clin Chem; 1994 Oct; 40(10):1927-33. PubMed ID: 7923774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single breath CO measurements normalized to 5% CO2 in Coombs' test positive neonates.
    Engel RR; Popelka G
    Physiol Meas; 2007 Sep; 28(9):977-88. PubMed ID: 17827647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of the development of neonatal hyperbilirubinemia in ABO incompatibility.
    Chen JY; Ling UP
    Zhonghua Yi Xue Za Zhi (Taipei); 1994 Jan; 53(1):13-8. PubMed ID: 8173995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.