These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 7924486)

  • 1. Measurement of respiratory acoustic signals. Effect of microphone air cavity depth.
    Wodicka GR; Kraman SS; Zenk GM; Pasterkamp H
    Chest; 1994 Oct; 106(4):1140-4. PubMed ID: 7924486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of respiratory acoustic signals. Effect of microphone air cavity width, shape, and venting.
    Kraman SS; Wodicka GR; Oh Y; Pasterkamp H
    Chest; 1995 Oct; 108(4):1004-8. PubMed ID: 7555110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new approach to acoustical evaluation of human respiratory sounds.
    Korenbaum VI; Kulakov YV; Tagiltsev AA
    Biomed Instrum Technol; 1998; 32(2):147-54. PubMed ID: 9559111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Measurement of knee joint sounds by microphone].
    Inoue J; Nagata Y; Suzuki K
    J UOEH; 1986 Sep; 8(3):307-16. PubMed ID: 3764221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of pathological mechano-acoustic signatures using precision accelerometer contact microphones in patients with pulmonary disorders.
    Gupta P; Wen H; Di Francesco L; Ayazi F
    Sci Rep; 2021 Jun; 11(1):13427. PubMed ID: 34183695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computerized Respiratory Sounds Are a Reliable Marker in Subjects With COPD.
    Jácome C; Marques A
    Respir Care; 2015 Sep; 60(9):1264-75. PubMed ID: 25969514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of respiratory acoustical signals. Comparison of sensors.
    Pasterkamp H; Kraman SS; DeFrain PD; Wodicka GR
    Chest; 1993 Nov; 104(5):1518-25. PubMed ID: 8222817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of lung sound transducers using a bioacoustic transducer testing system.
    Kraman SS; Wodicka GR; Pressler GA; Pasterkamp H
    J Appl Physiol (1985); 2006 Aug; 101(2):469-76. PubMed ID: 16627681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computerized lung sound analysis as diagnostic aid for the detection of abnormal lung sounds: a systematic review and meta-analysis.
    Gurung A; Scrafford CG; Tielsch JM; Levine OS; Checkley W
    Respir Med; 2011 Sep; 105(9):1396-403. PubMed ID: 21676606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-Contact Methods for Measuring Front Cavity Depths of Laboratory Standard Microphones Using a Depth-Measuring Microscope.
    Nedzelnitsky V; Wagner RP
    J Res Natl Inst Stand Technol; 2008; 113(2):97-119. PubMed ID: 27096114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the site of production of respiratory sounds by subtraction phonopneumography.
    Kraman SS
    Am Rev Respir Dis; 1980 Aug; 122(2):303-9. PubMed ID: 7416607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, construction, and evaluation of a bioacoustic transducer testing (BATT) system for respiratory sounds.
    Kraman SS; Pressler GA; Pasterkamp H; Wodicka GR
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1711-5. PubMed ID: 16916109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computerised respiratory sounds can differentiate smokers and non-smokers.
    Oliveira A; Sen I; Kahya YP; Afreixo V; Marques A
    J Clin Monit Comput; 2017 Jun; 31(3):571-580. PubMed ID: 27164980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Measurement of the frequency response of several stethoscopes in common use. Consequences for cardiac and pulmonary auscultation].
    Charbonneau G; Sudraud M
    Bull Eur Physiopathol Respir; 1985; 21(1):49-54. PubMed ID: 3978290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repeatability of measurements of normal lung sounds.
    Mahagnah M; Gavriely N
    Am J Respir Crit Care Med; 1994 Feb; 149(2 Pt 1):477-81. PubMed ID: 8306049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microcomputer based lung sounds analysis.
    Nissan M; Gavriely N
    Comput Methods Programs Biomed; 1993 May; 40(1):7-13. PubMed ID: 8403870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An adaptive noise reduction stethoscope for auscultation in high noise environments.
    Patel SB; Callahan TF; Callahan MG; Jones JT; Graber GP; Foster KS; Glifort K; Wodicka GR
    J Acoust Soc Am; 1998 May; 103(5 Pt 1):2483-91. PubMed ID: 9604343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computerised lung sound monitoring to assess effectiveness of chest physiotherapy and secretion removal: a feasibility study.
    Ntoumenopoulos G; Glickman Y
    Physiotherapy; 2012 Sep; 98(3):250-5. PubMed ID: 22898583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lung sound intensity in patients with emphysema and in normal subjects at standardised airflows.
    Schreur HJ; Sterk PJ; Vanderschoot J; van Klink HC; van Vollenhoven E; Dijkman JH
    Thorax; 1992 Sep; 47(9):674-9. PubMed ID: 1440459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interrater reliability of auscultation of breath sounds among physical therapists.
    Brooks D; Thomas J
    Phys Ther; 1995 Dec; 75(12):1082-8. PubMed ID: 7501711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.