These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Acoustic properties of the normal chest. Dalmay F; Antonini MT; Marquet P; Menier R Eur Respir J; 1995 Oct; 8(10):1761-9. PubMed ID: 8586136 [TBL] [Abstract][Full Text] [Related]
23. Modeling and measurement of flow effects on tracheal sounds. Harper VP; Pasterkamp H; Kiyokawa H; Wodicka GR IEEE Trans Biomed Eng; 2003 Jan; 50(1):1-10. PubMed ID: 12617519 [TBL] [Abstract][Full Text] [Related]
24. Validation of an automatic crackle (rale) counter. Murphy RL; Del Bono EA; Davidson F Am Rev Respir Dis; 1989 Oct; 140(4):1017-20. PubMed ID: 2802365 [TBL] [Abstract][Full Text] [Related]
25. Separation of discontinuous adventitious sounds from vesicular sounds using a wavelet-based filter. Hadjileontiadis LJ; Panas SM IEEE Trans Biomed Eng; 1997 Dec; 44(12):1269-81. PubMed ID: 9401227 [TBL] [Abstract][Full Text] [Related]
26. Lung sound intensity variability in normal men. A contour phonopneumographic study. Dosani R; Kraman SS Chest; 1983 Apr; 83(4):628-31. PubMed ID: 6831951 [TBL] [Abstract][Full Text] [Related]
27. Adaptive reduction of heart sounds from lung sounds using fourth-order statistics. Hadjileontiadis LJ; Panas SM IEEE Trans Biomed Eng; 1997 Jul; 44(7):642-8. PubMed ID: 9210825 [TBL] [Abstract][Full Text] [Related]
28. Respiratory sounds. Advances beyond the stethoscope. Pasterkamp H; Kraman SS; Wodicka GR Am J Respir Crit Care Med; 1997 Sep; 156(3 Pt 1):974-87. PubMed ID: 9310022 [No Abstract] [Full Text] [Related]
29. Mechanism of production of crackles after atelectasis during low-volume breathing. Ploysongsang Y; Schonfeld SA Am Rev Respir Dis; 1982 Sep; 126(3):413-5. PubMed ID: 7125331 [TBL] [Abstract][Full Text] [Related]
30. Detection of patients considering observation frequency of continuous and discontinuous adventitious sounds in lung sounds. Nakamura N; Yamashita M; Matsunaga S Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3457-3460. PubMed ID: 28269044 [TBL] [Abstract][Full Text] [Related]
31. Digital spectrum analysis of respiratory sound. Chowdhury SK; Majumder AK IEEE Trans Biomed Eng; 1981 Nov; 28(11):784-8. PubMed ID: 7319517 [No Abstract] [Full Text] [Related]
32. Lung and Heart Sounds Analysis: State-of-the-Art and Future Trends. Padilla-Ortiz AL; Ibarra D Crit Rev Biomed Eng; 2018; 46(1):33-52. PubMed ID: 29717676 [TBL] [Abstract][Full Text] [Related]
34. Detection of respiratory sounds at the external ear. Pressler GA; Mansfield JP; Pasterkamp H; Wodicka GR IEEE Trans Biomed Eng; 2004 Dec; 51(12):2089-96. PubMed ID: 15605855 [TBL] [Abstract][Full Text] [Related]
35. The art of auscultation: evaluating a patient's respiratory pathology. Ferns T; West S Br J Nurs; 2008 Jun 26-Jul 9; 17(12):772-7. PubMed ID: 18825853 [TBL] [Abstract][Full Text] [Related]
36. Effects of diameter, length, and circuit pressure on sound conductance through endotracheal tubes. Räsänen JO; Rosenhouse G; Gavriely N IEEE Trans Biomed Eng; 2006 Jul; 53(7):1255-64. PubMed ID: 16830930 [TBL] [Abstract][Full Text] [Related]
37. Novel Methods for Sensing Acoustical Emissions From the Knee for Wearable Joint Health Assessment. Teague CN; Hersek S; Toreyin H; Millard-Stafford ML; Jones ML; Kogler GF; Sawka MN; Inan OT IEEE Trans Biomed Eng; 2016 Aug; 63(8):1581-90. PubMed ID: 27008656 [TBL] [Abstract][Full Text] [Related]
38. A preliminary investigation of a method of detecting temporomandibular joint sounds. Yoshida H; Sano T; Kataoka R; Takahashi K; Michi K J Orofac Pain; 1994; 8(1):73-9. PubMed ID: 8032334 [TBL] [Abstract][Full Text] [Related]
40. A Modeling and Feasibility Study of a Micro-Machined Microphone Based on a Field-Effect Transistor and an Electret for a Low-Frequency Microphone. Shin K; Kim C; Sung M; Kim J; Moon W Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32998343 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]