These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 7924624)
1. Structural homologies and functional similarities between mammalian origins of replication and amplification promoting sequences. Stolzenburg F; Gerwig R; Dinkl E; Grummt F Chromosoma; 1994 Jun; 103(3):209-14. PubMed ID: 7924624 [TBL] [Abstract][Full Text] [Related]
2. Plasmid amplification-promoting sequences from the origin region of Chinese hamster dihydrofolate reductase gene do not promote position-independent chromosomal gene amplification. Brinton BT; Heintz NH Chromosoma; 1995 Nov; 104(2):143-51. PubMed ID: 8585992 [TBL] [Abstract][Full Text] [Related]
3. The Chinese hamster dihydrofolate reductase replication origin beta is active at multiple ectopic chromosomal locations and requires specific DNA sequence elements for activity. Altman AL; Fanning E Mol Cell Biol; 2001 Feb; 21(4):1098-110. PubMed ID: 11158297 [TBL] [Abstract][Full Text] [Related]
4. Replication in the amplified dihydrofolate reductase domain in CHO cells may initiate at two distinct sites, one of which is a repetitive sequence element. Anachkova B; Hamlin JL Mol Cell Biol; 1989 Feb; 9(2):532-40. PubMed ID: 2710116 [TBL] [Abstract][Full Text] [Related]
5. Distal sequences, but not ori-beta/OBR-1, are essential for initiation of DNA replication in the Chinese hamster DHFR origin. Kalejta RF; Li X; Mesner LD; Dijkwel PA; Lin HB; Hamlin JL Mol Cell; 1998 Dec; 2(6):797-806. PubMed ID: 9885567 [TBL] [Abstract][Full Text] [Related]
6. Identification of primary initiation sites for DNA replication in the hamster dihydrofolate reductase gene initiation zone. Kobayashi T; Rein T; DePamphilis ML Mol Cell Biol; 1998 Jun; 18(6):3266-77. PubMed ID: 9584167 [TBL] [Abstract][Full Text] [Related]
7. Chemical footprinting of structural and functional elements of dhfr oribeta during the CHOC 400 cell cycle. Schroll AL; Heintz NH Gene; 2004 May; 332():139-47. PubMed ID: 15145063 [TBL] [Abstract][Full Text] [Related]
8. Identification of an origin of bidirectional DNA replication in mammalian chromosomes. Burhans WC; Vassilev LT; Caddle MS; Heintz NH; DePamphilis ML Cell; 1990 Sep; 62(5):955-65. PubMed ID: 2393905 [TBL] [Abstract][Full Text] [Related]
9. Initiation sites are distributed at frequent intervals in the Chinese hamster dihydrofolate reductase origin of replication but are used with very different efficiencies. Dijkwel PA; Wang S; Hamlin JL Mol Cell Biol; 2002 May; 22(9):3053-65. PubMed ID: 11940663 [TBL] [Abstract][Full Text] [Related]
10. Repetitive sequence elements in an initiation locus of the amplified dihydrofolate reductase domain in CHO cells. Leu TH; Anachkova B; Hamlin JL Genomics; 1990 Jul; 7(3):428-33. PubMed ID: 2365359 [TBL] [Abstract][Full Text] [Related]
11. Amplified inverted duplications within and adjacent to heterologous selectable DNA. Heartlein MW; Latt SA Nucleic Acids Res; 1989 Feb; 17(4):1697-716. PubMed ID: 2922290 [TBL] [Abstract][Full Text] [Related]
12. Identification and analysis of specific chromosomal region adjacent to exogenous Dhfr-amplified region in Chinese hamster ovary cell genome. Park JY; Takagi Y; Yamatani M; Honda K; Asakawa S; Shimizu N; Omasa T; Ohtake H J Biosci Bioeng; 2010 May; 109(5):504-11. PubMed ID: 20347775 [TBL] [Abstract][Full Text] [Related]
13. Localization and DNA sequence of a replication origin in the rhodopsin gene locus of Chinese hamster cells. Gale JM; Tobey RA; D'Anna JA J Mol Biol; 1992 Mar; 224(2):343-58. PubMed ID: 1560457 [TBL] [Abstract][Full Text] [Related]
14. Cis-acting sequences from mouse rDNA promote plasmid DNA amplification and persistence in mouse cells: implication of HMG-I in their function. Wegner M; Zastrow G; Klavinius A; Schwender S; Müller F; Luksza H; Hoppe J; Wienberg J; Grummt F Nucleic Acids Res; 1989 Dec; 17(23):9909-32. PubMed ID: 2602145 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the autonomous replication behavior in human cells of the dihydrofolate reductase putative chromosomal origin of replication. Caddle MS; Calos MP Nucleic Acids Res; 1992 Nov; 20(22):5971-8. PubMed ID: 1461730 [TBL] [Abstract][Full Text] [Related]
16. Autonomous replication in vivo and in vitro of clones spanning the region of the DHFR origin of bidirectional replication (ori beta). Zannis-Hadjopoulos M; Nielsen TO; Todd A; Price GB Gene; 1994 Dec; 151(1-2):273-7. PubMed ID: 7828889 [TBL] [Abstract][Full Text] [Related]
17. Mapping of replication initiation sites in the mouse ribosomal gene cluster. Gögel E; Längst G; Grummt I; Kunkel E; Grummt F Chromosoma; 1996 Apr; 104(7):511-8. PubMed ID: 8625739 [TBL] [Abstract][Full Text] [Related]
18. How a replication origin and matrix attachment region accelerate gene amplification under replication stress in mammalian cells. Tanaka SS; Mitsuda SH; Shimizu N PLoS One; 2014; 9(7):e103439. PubMed ID: 25061979 [TBL] [Abstract][Full Text] [Related]
19. Discrete functional elements required for initiation activity of the Chinese hamster dihydrofolate reductase origin beta at ectopic chromosomal sites. Gray SJ; Liu G; Altman AL; Small LE; Fanning E Exp Cell Res; 2007 Jan; 313(1):109-20. PubMed ID: 17078947 [TBL] [Abstract][Full Text] [Related]
20. A potential role for mini-chromosome maintenance (MCM) proteins in initiation at the dihydrofolate reductase replication origin. Alexandrow MG; Ritzi M; Pemov A; Hamlin JL J Biol Chem; 2002 Jan; 277(4):2702-8. PubMed ID: 11723123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]